

 © A4Q Copyright 2019

Syllabus 2019

Version 1.0: 03.08.2017
Final Version 2019 1.5: 23.08.2019

Table of Contents

0. Introduction ... 2
0.1 Purpose and business outcomes .. 2

1. Fundamentals of IT Security (110 minutes)... 3
1.1 The Concept of IT Security (15 minutes) .. 4
1.2 Assets, Threats and Vulnerabilities – The Context of IT Security (55 minutes) 5
1.3 Principles in Developing Secure Software (15 minutes) .. 8
1.4 Why Security is different (15 minutes) ... 8
1.5 Security Standards (10 minutes) .. 9

2. Understanding Attacks (255 minutes) .. 10
2.1 Overview on Attack Taxonomies (5 minutes) ... 11
2.2 Malware Types (15 minutes) ... 11
2.3 Attack Surface (30 minutes) .. 12
2.4 Common attacks and web security (160 minutes) .. 13

2.4.1 The Internet Protocol Suite ... 13
2.4.2 Client-Server sessions on the web .. 14
2.4.3 The Internet Protocol Suite as Attack Vector ... 14
2.4.4 Injections ... 15
2.4.5 DOS and DDOS .. 16
2.4.6 Cross Site Scripting (XSS) ... 16
2.4.7 Cross Site Request Forgery (CSRF) .. 16
2.4.8 Web Vulnerabilities in Authentication and Authorization ... 17
2.4.9 Encrypted communication and website authenticity .. 17

2.5 Social Engineering (20 minutes) .. 18
2.6 Security in Wireless Communications (25 minutes) .. 19

3. Security in the Software Lifecycle (350 minutes).. 21
3.1 The Security Development Lifecycle Process (30 minutes) .. 22
3.2 Threat modeling & Requirements Engineering (145 minutes) 23

3.2.1 Threat identification .. 23
3.2.2 Threat determination and rating .. 24

3.3 Secure Design and Secure Coding Principles (95 minutes) .. 26
3.3.1 Secure Design .. 26
3.3.2 Secure Coding .. 27

3.4 Security Testing (60 minutes) .. 27
3.4.1 Security testing objectives, entry- and exit-criteria .. 28
3.4.2 Security Testing Types .. 29

3.5 Defect management and classification (20 minutes) ... 31

 © A4Q Copyright 2019 2

4. References ... 32
4.1 ISTQB Documents .. 32
4.2 Standards .. 32
4.3 Books .. 33
4.4 Other References (Articles and Web-Resources) ... 33

0. Introduction

0.1 Purpose and business outcomes

The Microsoft Security Development Lifecycle (MSDL) [URL:MSDL] approach as well
as the Open SAMM [URL:OpenSAMM] assessment model suggest that any staff
member within a software project should receive comprehensive basic training on IT
security and advanced training according to the role held within the organization.
The goal of this syllabus is to provide a comprehensive introduction to IT security for
any team member involved in the development of an IT system, software application
or embedded system. Staff trainings following this syllabus will fulfill basic security
training needs as recommended in [ISO/IEC 27034-1] and the MSDL. It addresses
the needs of project managers, requirement engineers, software developers and
testers alike.
General benefits of the training are:

 understand the most common security related terms, concepts and processes.
 actively take part in and contribute to security related risk management

activities
Specific benefits for project managers:

 align project activities with required or recommended security related activities
 understand and explain fundamental security requirements that a given

system must meet
 understand and explain the activities required for developing a specific system

or application in a secure manner
Specific benefits for developers:

 understand and explain the activities that are required for developing secure
systems and applications

 understand common security related mistakes in development
Specific benefits for requirement engineers:

 understand and explain how fundamental security requirements can be
established

 understand common security related mistakes in requirements engineering
Specific benefits for testers:

 understand the role of testing as part of a security development lifecycle
 understand and explain different security testing types

Specific benefits for IT risk managers and IT security experts1
 receive guidance on what to include in a comprehensive basic training on IT

security

1 This is actually an intended benefit of the syllabus per se. Members of this group may have
participated in advanced trainings on security and hence may not require basic training.

 © A4Q Copyright 2019 3

1. Fundamentals of IT Security (110 minutes)

Basic Terms
accountability, asset, authenticity, authentication, authorization, availability,
confidentiality, integrity, non-repudiation, personally identifiable information (PII),
security, threat, threat agent, vulnerability, weakness

Learning Objectives

(1.1.1) Recall properties of information security and related attributes. (K1)

(1.2.1) Identify examples for assets, vulnerabilities and threats or threat agents. (K2)

(1.2.2) Recall causes for a weakness and when a weakness becomes a vulnerability.
(K1)

(1.2.3) Identify which system property from confidentiality, integrity or availability is
affected by a given system weakness, vulnerability or action from an attacker. (K2)

(1.2.4) Describe typical activities in a security risk management process. (K2)

(1.2.5) Identify typical human threat agents/attacker types. (K1)

(1.3.1) Identify secure development principles based on authentication, authorization
and auditability. (K2)

(1.4.1) Recall which properties may differentiate security relevant system failure from
other types of system failure. (K1)

(1.4.2) Given a list of root causes and common errors, identify which are typical for
security vulnerabilities. (K2)

(1.5.1) Given a short description of a security standard, name the type of the security
standard. (K1)

 © A4Q Copyright 2019 4

1.1 The Concept of IT Security (15 minutes)

In this syllabus we discuss security in the context of information systems. By
definition an information system is a closed or open dynamical, electronic system,
with the ability to store and process information [Eck 14].
According to [ISO 25010] security is “The degree to which a product or system
protects information and data so that persons or other products or systems have the
degree of data access appropriate to their types and levels of authorisation.”

The ‘security-triangle’ CIA is named by virtually all leading IT-Security organizations
(e.g. OWASP, InfoSec) as one of the most important security patterns.

CIA stands for the quality attributes confidentiality, integrity and availability:

 Confidentiality in an information system means that access to information
must be restricted to those authorized ([ISO 25010]). Data must be protected
against non-authorized access, no matter if the unauthorized access happens
on purpose or by accident.

 Integrity is defined as “degree to which a system, product or component
prevents unauthorized access to, or modification of, computer programs or
data” ([ISO 25010]). Note that information is more than data. For example,
retrieving an encrypted file may be a breach of integrity, whereas an
unauthorized retrieval of the information stored in the file is a breach in
confidentiality.

 Availability means [ISO 25010] that the information stored in a system or the
services delivered by the system are available to authorized users, when its
use is required. In other words, the system must be operational. Referring to
[ISO 25010] availability can also be considered as a property of reliability.

Other properties of security according to [ISO 25010] are:

 Non-repudiation – a system must have appropriate mechanisms (e.g. logging)
in place, so that it can be proven that actions and events have taken place.
These mechanisms (e.g. the logs) must be protected against tampering.

 Accountability – the “degree to which the actions of an entity can be traced
uniquely to the entity”. This usually requires some form of authentication and
storing e.g. identifiers for users, programs, processes and systems in log-files.

 Authenticity – measures the “degree to which the identity of a subject or
resource can be proved to be the one claimed”.

 © A4Q Copyright 2019 5

1.2 Assets, Threats and Vulnerabilities – The Context of IT
Security (55 minutes)

Ensuring the security of an IT system involves more aspects than the definition for
security given above implies. It encompasses services and information that are
valuable to a company. The European Union Agency for Network and Information
Security (ENISA) defines security as “All aspects related to defining, achieving, and
maintaining data confidentiality, integrity, availability, accountability, authenticity, and
reliability. …” [ENISA]
However, considering security always implies that a system might be at risk for some
reason.
A system is said to be secure, when it is able to adequately protect specified assets
from unauthorized access, destruction, disclosure, modification of data, and/or denial
of service. Any circumstance or event that may result in one of the latter outcomes is
called a threat to the system [ENISA].

An asset can only be defined in the context of an organization: “Anything that has
value to the organization, its business operations and their continuity, including
Information resources that support the organization's mission.” ([ENISA])
Examples for assets within an information system can be personally identifiable
information (PII) for individuals, such as credit card numbers or any information that
may be used for authentication. For a company it may, for instance, be electronically
stored business plans, information on pending patents, salary lists, any trade secret,
or contracts. Company assets also may include computer-controlled production
capabilities or other services delivered via the Internet. For a nation, assets may
include military secrets, critical infrastructure such as telecommunication, water and
electrical power supplies and traffic control systems.

Attackers or adversaries (e.g. individuals, organizations) can threaten assets1.
Adversaries will usually exploit a weakness in an information system. A weakness
can arise from a programming error, bad design or architecture or faulty
requirements [ENISA]. Very often misconfigurations result in weaknesses.
A vulnerability in a system arises when an attacker can gain or has access to a
weakness.

Typical weaknesses and vulnerabilities may impact the above named security
triangle CIA as follows

 Confidentiality, e.g.:
o The Heartbleed bug in the open SSL encryption library allowed an

attacker to read out arbitrary memory contents from web servers
including passwords and keys.

o Misconfiguration of servers or firewalls may leak program version or IP-
address information to an attacker that he can use to prepare future
attacks. The action of collecting this type of information, is called
banner grabbing or fingerprinting.

o Error messages may reveal program internal information e.g. on its
structure, the programming language used or configurations that an

1 Also chance events, such as a hardware failure or natural catastrophes threaten assets. These are

not discussed in this syllabus.

 © A4Q Copyright 2019 6

attacker can use to prepare future attacks.

 Integrity, e.g.:
o Leaving default passwords in place may easily allow an attacker to

change the configurations of a router or upload spoofed firmware to an
IoT-device.

o Deleting server logs or wiping hard drives to obscure an attack.
o An unsuitable input validation may allow an attacker to embed

malicious script code in the guestbook of a website1.
 Availability, e.g.

o Denial of Service (DOS) or distributed denial of service attacks (DDOS)
may overload a server with queries so that its services are no longer
available.

o Flaws in a programs logic or database queries can allow an attacker to
craft inputs that will result in the system using up a huge amount of
computational resources. The attacker may use this to incapacitate the
system. This is also a DOS type of attack.

o An attacker uses ransomware to encrypt a hard drive. This also impacts
the integrity of the system, since the attacker tampers with its storage
facilities.

Note: An attacker might use social engineering techniques to obtain access to a
vulnerable part of a system (see chapter 2 for details).

Building and maintaining secure systems requires a continuous risk management
following e.g. [ISO 31000:2018] that includes at least the following activities:

1. Identify protection goals, e.g. assets that need protection, privacy regulations
that must be followed, etc. Identify generic threats to these assets. To do this,
an organization must understand its business context and know which
information systems are actually used.

2. Define which level of protection is required for each system or component.
3. Analyze the architecture, systems, components, libraries, etc. in use and

identify actual threats and vulnerabilities.
4. Act upon the findings.
5. Validate if the implemented actions succeed in eliminating identified threats or

mitigate the risks imposed to an acceptable level.

[ISO 31000:2018] stresses the cyclic nature of risk management. Hence, the process
activities must be repeated as required.

Risk management processes for security have to be implemented on different levels
within an organization. [NIST-SP-800-53] gives an example for an organization wide
security risk management process. An example for a threat assessment process that
is fit for use in a security software development lifecycle can be found in [Howard 06].

An important factor in a security risk analysis is to understand the potential threat
agents, that is who or what poses a threat to the system. [CC-Part-1] gives as
examples:

1 Cross Site Scripting or XSS – see chapter 2.

 © A4Q Copyright 2019 7

 Hacker
 Malicious user
 Non-malicious user
 Computer processes
 Accidents

The human threat agents can be categorized by

 Skill,
 Motivation,
 Relative position to the IT-System.

A categorization by skill may differentiate

 Script-kiddies have at most basic programming skills but know how to operate
a computer system and use existing programs or scripts (hence the name)
that exploit known vulnerabilities.

 Dedicated hackers have good programming skills, knowledge of network and
operating system technologies and good background-knowledge of IT-security
concepts and tools.

 Skilled hackers have excellent programming skills including knowledge of
hardware-near programming languages (e.g. assembler) and are able to write
their own security tools, exploits or – in case of malicious intent – malware.

Skilled hackers may also be hired by large organizations such as corporations, a
countries secret service or its military. If this is the case, the threat is usually much
larger than from a single or even a group of skilled hackers. These organizations
have vast resources to back up any type of attack on information systems including
human intelligence.

A categorization by motivation may distinguish

 Curiosity – usually a trait of non-malicious users (e.g. software testers)
 Showing-off
 White hat or ethical hacker – finds vulnerabilities, detects ongoing attacks and

informs vendors, organizations and the public
 Hacktivists – use cyber-attacks as a mean for protest, defacement of political

enemies or to steal and publish secret information
 Cracker, black hat hacker or cyber-criminal – executes or supports illegal

attacks on IT-systems with malicious intent (e.g. financial interests, espionage,
terrorism or revenge)

 Terrorism, asymmetric warfare and espionage – typically orchestrated by
groups of skilled hackers1

A categorization by position should cover at least

 Out-side attacker – an entity that may start its attack from outside the local
network, not as a legitimate user and without prior inside information

 Inside attacker – a legitimate user within the organization that may have
malicious2 or non-malicious intent (e.g. curiosity).

1 These types of intent often involve so called Advanced Persistent Threats (APT) – a set of stealthy

and continuous computer hacking processes aimed at specific targets, e.g. critical infrastructure
2 Note: An inside attacker may have been coerced into his activities by blackmail or other forms of

social engineering.

 © A4Q Copyright 2019 8

 Man-In-The-Middle – controls or sniffs network traffic using an infected device,
e.g. a computer, router, server or smart-phone that may be within or outside
the local network.

1.3 Principles in Developing Secure Software (15 minutes)

The preceding section is concerned with what a secure system should prevent. This
section is about which principles must be built into software to be secure:

 Authentication: The process of establishing an identity (and thus authenticity)
is called authentication. A secure system must have trustworthy methods for
authentication. These can be for instance knowledge-based (e.g. passwords)
token-based, use challenge-responses (e.g. captcha’s, tokens sent via SMS
or e-mail) or biometric attributes or they can employ trusted third parties or
identity providers (e.g. an organization issuing an electronic passport with a
chip and a pin). In a multi-factor authentication, more than one of these
methods is applied.

 Authorization: A secure system must ensure at all times that all actions by
processes and entities are executed within the limits of predefined rights.
Typical principles to be applied include [Saltzer 75]

o Complete mediation: Any access to data objects, processes, services,
etc. is checked every time for proper authorization.

o Least privilege: A program, user, system, etc. can only access exactly
those resources required for its legitimate purpose

 Auditability: Auditability of a system is a prerequisite to accountability and
non-repudiation. Secure systems must have mechanisms to log events that
may be part of an attack and protective measure against tampering with the
log or the logging mechanisms. [Lamport 78] states that auditor-functionality
should include reliable error-handling procedures. A safe and secure system
must be able to audit its own state to a certain extent.

Security practitioners often describe the triplet authentication, authorization and
auditability as ‘gold-standard’, since all three words start with the syllable ‘au’ – the
chemical symbol for aurum (gold). These Au-properties were originally discussed in
[Lamport 78]. Any implementation of security functionality must be done in a way that
prevents tampering. Therefore, it is highly recommended to use a trusted computing
base for security functionality. A trusted computing base should be certified
independently after the Common Criteria Standard [CC-Part-1] to [CC-Part-3].

1.4 Why Security is different (15 minutes)

Typical failures are deviations from an expected behavior that can be easily observed
by a user or a software tester. Although security functions may also show these kinds
of failures, the majority of security relevant defects may not even be noticed during
normal use of a system. Seemingly correct functional behavior may have side effects
that go unnoticed for the majority of users and even testers. E.g. a function may allow
additional operations that are not described in its specification. Such weaknesses in
the software implementation or flaws in the system design and architecture may be
exploited by an attacker. Also, faulty compilers, compiler options, deprecated third
party libraries or hardware may give rise to vulnerabilities. Other vulnerabilities result

 © A4Q Copyright 2019 9

from weaknesses e.g. in protocol implementations, flawed memory management by
an application or the operating system itself. Uncovering or preventing this kind of
defects requires a deep technical understanding.

Typical reasons for security vulnerabilities and related defects are:

 Lack of security awareness, naivety and being unsuspicious
 Lack of due diligence, e.g. in compliance to regulations and in checking and

keeping systems and configurations up-to-date
 Missing, incomplete or inadequate security policies or insufficient control

whether policies are actually being adhered to
 Missing security requirements and concepts
 Flaws in the system architecture or its design
 Lack of usability in security functionality, e.g. insecure defaults
 Wrong assumptions, e.g. assuming that other security measures are

successful, that only certain inputs will be received, or that a communication
channel is secure.

Security must therefore be considered in each software development phase, as well
as on a regular basis for systems in operation.

1.5 Security Standards (10 minutes)

Standards offer a collection of requirements defined by subject matter experts as well
as process and document templates. They also can be used as checklists and so
help to avoid common mistakes.
There are hundreds of standards on information security and related topics in
existence – much more than can be meaningful applied. To give a comprehensive
overview, this syllabus distinguishes four categories:

 Regulations, e.g. laws, directives or regulations such as the European General
Data Protection Regulation (GDPR).

 Standards for secure software development as SDLC (Software-Development
Lifecycle) models covered in [ISO/IEC 27034] and implemented by the
Microsoft Security Development Lifecycle. Another example is the Common
Criteria catalogue, (see e.g. [CC-Part-1], [CC-Part-2], [CC-Part-3]) which
includes good practices for security requirements as well as procedures for
verification and validation of security functions.

 Standards on Information Security Management Systems such as [ISO/IEC
27001] or [NIST-SP-800-39]. These standards describe risk management
processes and how they can be applied to people, processes and IT systems
to keep information assets secure.

 Domain specific standards. These are either industry specific like the Payment
Card Industry standards or technology related, such as the standards and
guidelines published by the Open Web Application Security Project (OWASP).

 © A4Q Copyright 2019 10

2. Understanding Attacks (255 minutes)

Terms
Access control, attack surface, attack vector, CSRF, DDOS, DOS, Exploit kit, Man-in-
the-middle, Phishing, Replay attack, Root kit, Scareware, Smishing, Sniffing, Trojan,
Virus, Vishing, Worm, XSS, Zero-day exploit

Learning Objectives

(2.1.1) Recall typical patterns used to classify attacks. (K1)

(2.2.1) Know the characteristics that define virus, worm, trojan, scare-ware, root kit
and exploit kit. (K1)

(2.3.1) Explain attack surfaces and attack vectors. (K2)

(2.3.2) Explain the principles of memory-based attacks. (K2)

(2.4.1) Recall the four layers of the Internet protocol suite and their purpose. (K1)

(2.4.2) Describe typical attack surfaces and vectors for a client-server session. (K2)

(2.4.3) Understand that attacks can happen on all layers of the Internet protocol
suite. (K2)

(2.4.4) Understand the concept of injection attacks and possible defenses. (K2)

(2.4.5) Differentiate how DOS and DDOS work. (K2)

(2.4.6) Differentiate how different XSS types work. (K2)

(2.4.7) Differentiate how a CSRF works. (K2)

(2.4.8) Differentiate possible causes for vulnerabilities in authentication, session
management and access control in web applications. (K2)

(2.4.9) Understand the risks of using weak or no encryption. (K2)

(2.4.10) Differentiate the principles of symmetric and asymmetric encryption and the
need to establish authenticity in web communication. (K2)

(2.5.1) Describe the steps in the social engineering attack cycle. (K2)

(2.5.2) Recall characteristics of phishing, vishing and smishing. (K1)

(2.6.1) Describe typical threats to wireless communications (K2)

(2.6.2) Describe principles and examples for operating wireless communications in a
secure manner (K2)

 © A4Q Copyright 2019 11

2.1 Overview on Attack Taxonomies (5 minutes)

Attacks or – more specific – attack vectors may be classified by

 Type of attacker – see chapter 1.2
 Type of malware that is used – see section 2.2 for examples.
 Attack surface, which is the interface to the exploitable application. See

section 2.3 for details.
 Vulnerable entity or property within the software, e.g. a broken authentication

management, script execution, etc. A more elaborate description is given in
section 2.4.

 Method used in the attack, as in Denial of Service, Injection or Social
Engineering – see sections 2.4. and 2.5.

There are also vulnerability classification schemes such as STRIDE, DREAD and
‘Common Vulnerabilities and Exposures’ in use. These are discussed in chapter 3 of
this syllabus.
A special case is the zero-day-exploit. It uses a vulnerability as attack vector that was
unknown before the attack occurred – so no patch exists.
Current real world examples for the attack types discussed in this chapter can be
found for instance under [URL:CISA alerts] or [URL:NVD].

2.2 Malware Types (15 minutes)

Malicious software – in short malware – describes any type of software that is written,
installed and executed with malicious intent.
The following list describes typical forms of various malware types. Actual malware
can also be a combination of multiple types:

 A virus is a type of malware that requires a host program for execution. It
cannot run without another program but replicate itself – i.e. infect other
programs, files, computers, etc.

 A worm is a type of malware that can run on its own, replicate and typically
marks and identifies already infected systems or computers. Usually consists
of several parts or segments like a real worm. Worms are used to spread
malware from machine to machine throughout a network.

 A Trojan is a type of malware that is covertly installed on a machine, often with
other, non-malicious software and may be able to hide its operations. Trojans
usually have installer capabilities and install or download other malware, such
as key loggers, rootkits, viruses, etc.

 Exploit kits can be installed e.g. on servers and are capable to automatically
identify and exploit software vulnerabilities in client machines communicating
with the server. They upload and execute malicious code on the clients in the
process.

 A root kit is designed to gain unauthorized – usually administrative – access
on target machines without being noticed by surveillance programs such as a
regular system monitors.

 Scareware is a type of malware employing social engineering techniques. It
manipulates users into buying unneeded and mostly useless
software by causing anxiety or the perception of a threat.

 © A4Q Copyright 2019 12

2.3 Attack Surface (30 minutes)

[Howard 06] defines the attack surface as “the sum of all code and functionality
accessible to users and potential attackers.”
From a testing perspective [Whit03] differentiates generic types of attack surfaces:

 the User Interface (UI)
 the Application Programming Interface (API)
 the file system
 the system’s memory

Attacks via any attack surface may allow

 Different types of injections
 Controlling directory paths, URLs, etc. for reading and writing
 Unauthorized access to data or services
 Direct calls to operating system functions

Attacks via the user interface can occur via any input that is directly manipulated by a
user. This includes attacks against weak authentication mechanisms, e.g. usage of
default passwords, weak authorization concepts where confidential information can
be accessed in several ways with different rights (see section 2.4 for further
discussion and examples), injections like SQL injections (also see section 2.4) or
buffer overflows (see memory based attacks below).

Attacks using an API are specific to the API. Often known vulnerabilities of older and
unpatched API versions or common API programming errors are exploited in this
type of attack. Often side-effects or function overloading of API functions are
exploited. This may be difficult to spot in design and implementation, since the code
gives the impression, that only admissible functions and constructs have been used.
A well-known example is the use of the Perl open-command with two parameters
(instead of three) which may allow for shell code injection or DOS.

Typical attacks on the file system include reading information from unencrypted files,
tampering with saved data, configuration files or executable files, disassembly of
binary files or decryption of weakly encrypted files, e.g. MD5-hashtables of
passwords.

Memory based attacks make use of the layout and operations of a computer’s
memory. To understand how memory attacks work, a basic understanding of the
layout of a computer’s memory is required.
Typical basic memory structures are stack and heap. Both will contain data,
instructions and jump or return addresses. Return addresses indicate where
instructions are located that should be executed next. Data stored in the computer’s
memory will typically include user-controlled input that is submitted via user interface,
a file or an API. Data written or queried by a user typically have a predefined
maximum length. Two common patterns applied in memory-based attacks use this
simple fact:

 Buffer overflow: The adversary writes to the memory an amount of data
larger than what the program is expecting. In this way he can change the
content of subsequent data fields. He may be able to manipulate return
addresses or control variables and thus change the way the program

 © A4Q Copyright 2019 13

executes. He also may be able to embed his own malicious code as data
entries and bring it to execution.1

 Buffer over-read: An adversary can read from memory positions, that he
should have no access to. This may be the case, if the adversary requests
(e.g. in a query) a larger set of data than the program expects. From a buffer
over-read, an attacker may gain unauthorized access to any kind of data,
including additional knowledge of source code running on a server, content
of control variables, return addresses and their position in memory to prepare
future attacks.

Both types of attack are possible, if the principle of complete mediation is not
consequently applied on the implementation level.

Note:
An adversary will often use more than one attack surface to stage an attack. e.g.
enter a crafted string via the user interface that will corrupt a return address in the
computer’s memory and then will execute machine readable code, embedded in the
string.

2.4 Common attacks and web security (160 minutes)

Attacks on the security of information systems have already been performed a long
time before the advent of the Internet. Torturing an adversary’s messenger, reading
his secret messages, listening to his radio transmissions or wiretapping into a
telephone line, are just a few examples. Actually, many of the first Internet hackers
were so-called ‘phone phreaks’ – people that actively searched and exploited
weaknesses in telephone networks for various reasons, e.g. making free calls
(fraud), showing-off or sometimes just technical curiosity [MIT03].
To speak of common attacks in this chapter may sound a little bit preposterous, since
a multitude of different attack patterns is known. MITRE’s Common Attack Pattern
Enumeration and Classification (CAPEC™) identifies for instance more than 500
[URL:CAPEC]. It is obvious that these cannot be discussed in a first course on IT
security. That is why this chapter confines itself to representative attack types that
provide typical examples on how antagonists act.
The Internet provides a worldwide interconnectedness that enormously magnifies the
reach of potential attackers. To understand IT security requires a basic
understanding on how communication in this giant network operates.

2.4.1 The Internet Protocol Suite

Communication within the Internet requires hardware components and software that
controls various aspects of communication.
The Internet protocol suite (in short TCP/IP) is a set of specifications ([RFC 1122],
[RFC 1123]) that describe how communications are established using a four layer
architecture.

The four layers are

1 Advanced forms call library functions (e.g. return-to-libc-attacks) in malicious way or use snippets of

the programs own code (return-oriented programming: ROP). These are not discussed here.

 © A4Q Copyright 2019 14

 The link layer establishes communications between a host (e.g. a desktop, a
local server, a tablet, etc.) with its direct neighbourhood. This neighbourhood
is the directly-connected or ‘local network’1. There are actually other software
layers below the link layer. They establish physical connections – e.g.
between network cards or different hardware components in a computer.

 The Internet layer protocols are used to transport data packets (datagrams)
between hosts in different local networks. The protocols are ‘connectionless’,
which means that there is no delivery-guarantee for a datagram.

 The transport layer provides end-to-end communication for applications
running on hosts. Two major protocols are used on this layer. The first is the
state- or connectionless User Datagram Protocol (UDP). The second is the
Transmission Control Protocol (TCP). The latter is a reliable protocol that
establishes a confirmed connection via a handshake transaction and keeps
track of all data packages sent by sequencing.

 The application layer incorporates two protocol categories. The first are
protocols that provide services directly to users such as telnet, ftp and smtp.
The second are support protocols that support the protocols used by the
users. An example for a support protocol is the Domain Name System
(DNS). It supports the location and identification of computer services and
devices by human-readable names instead of abstract addresses.

2.4.2 Client-Server sessions on the web

A session is an exchange of information between two devices like computers. Web
sessions between a client and a server are typically handled by application layer
protocols. The setup of the communication as well as the actual exchange of data
packages is handled by the lower level protocols.
The encryption protocol TLS (transport layer security) is used to wrap and encrypt
application layer data before it is sent using a transport protocol like TCP. To show
that a protocol uses TLS the letter ‘s’ for secure is added to the protocol name, as in
https or sftp.
A typical web-session is initiated by a client that sends a request to a webserver, e.g.
via a browser. The request is processed on the webserver – for example via scripts
for database access. Then an answer such as a status of the request or data is
returned to the client.

2.4.3 The Internet Protocol Suite as Attack Vector

The original purpose of the Internet protocol suite was to specify reliable, efficient
and easy to implement ways of communication. The designers did not have security
as a major requirement in mind. For this reason, many original protocol specifications
are flawed from a security point of view. Many protocols have no secure mechanism
for authentication and authorization. Also, secure protocol specifications may contain
design flaws, or their implementations can contain vulnerabilities. Mending these
issue-types in the specifications is an ongoing process.

Vulnerabilities can occur on any of the four layers. For instance, on the link layer, an
attacker may try to associate the media access control address (MAC) of a device he

1 Not to be confused with the local area network, which refers rather to the geographical area such as

a home, school or the premises of a company.

 © A4Q Copyright 2019 15

controls with the Internet Protocol address (IP) of another, genuine host in the
network. For this, the address resolution protocol (ARP) is used, hence this type of
attack is called ARP spoofing or ARP cache poisoning. Counterfeiting (spoofing) an
IP-address for sending packets to a target host from a supposedly trustworthy source
happens on the internet layer.
The majority of web-based attacks uses transport and application layer as attack
vector. Attacks may be aimed at a webserver exploiting vulnerabilities in a server’s
configuration, scripts, databases, protocol versions, services or OS. From a server, a
client may be attacked using vulnerabilities in the browser or other services that
contact the server. An attack can also be initiated by a ‘man in the middle’, who
controls the communication between server and client.

2.4.4 Injections

The goal of an injection attack is to trick the target system into treating a data input in
an unauthorized way. A maliciously crafted user input, protocol message or file may
exploit this type of vulnerability.
Examples are

 SQL-injections: Input to a database query can be manipulated to execute
different SQL-Code than intended by the application.

 Lightweight Directory Access Protocol (LDAP) injection: Input is used to
manipulate file system operations such as search, add, modify or delete in an
unauthorized or unintended way.

 An operating system (OS) injection: An application passes user-controlled
input directly to a call of a system function that will execute with the same
authorization with which the application is run.

 Code injection using a buffer overflow as discussed in section 2.3.

Injection attacks can occur whenever input data from a potential untrustworthy
source is processed by a computer program. So, an injection can happen anywhere,
if the program’s input is not properly ‘sanitized’. Hence, proper input sanitization
should always be subject to thorough testing.
Typical methods for input sanitization include

 Whitelisting: Only allow previously defined input patterns. Everything not on
the whitelist is forbidden. Data handling is aborted when a pattern different
from a whitelisted one is recognized

 Blacklisting: Reject predefined input patterns or forbid a set of specified
inputs. Everything not on the blacklist is allowed, e.g. filter the data
recursively by removing not allowed sequences or abort data handling when a
forbidden pattern is recognized.

 Encode all input and output so that no undesired interpretation of an input is
possible e.g. changing an executable command as an input to a simple string
or transposing all characters to an upper-case format.

A specific method to prevent SQL-injections is the use of prepared statements,
where the user’s input is encoded and bound to string variables. These string
variables are used in fixed (prepared) statements. The application then uses only this
type of statement to query a database.

 © A4Q Copyright 2019 16

2.4.5 DOS and DDOS

“In a denial-of-service (DoS) attack, an attacker attempts to prevent legitimate users
from accessing information or services. “[URL:US-CERT-DOS]
Denial of Service can be achieved by either crashing an application using a known
bug or by overloading the target system’s processing capabilities. The latter can be
achieved by triggering a resource eating (e.g. memory, CPU time) computation or by
overloading the targets communication interfaces.
In a distributed denial of service attack (DDoS), single requests from a large number
of computers or other digital devices connected to the Internet overload a target’s
connection to the net or its resources.
DoS and DDoS attacks may also aim at any element that connects a targeted service
with the internet.

2.4.6 Cross Site Scripting (XSS)

Cross Site Scripting (XSS) is a type of injection attack where a script is executed by a
user’s browser that does not originate from the site actually visited.
There are three major types of XSS applied by attackers.

 In a persistent or stored XSS attack an attacker stores malicious scripts
directly on a webserver. Such scripts may be hidden everywhere, where a
user can enter data that is displayed to other users.

 Reflected or non-persistent XSS injects executable code in a query sent by
the user. The executable code is reflected back to the user by the server, e.g.
as part of an error message and then executed by the browser. A query
containing the injection may involuntarily be sent by a user when clicking a
crafted link in an e-mail or on another website.

 DOM based XSS exploits vulnerabilities in the implementation of the DOM-API
or its use on the client side. DOM stands for the Document Object Model
standard [URL:W3C-DOM]. It is implemented in different APIs that support
dynamical website creation in browsers. When a script for dynamical website
creation applies external input (e.g. from the user) to create a website’s
representation dynamically in the browser, it may be vulnerable to this type of
attack. An attacker can use a similar approach as in reflected XSS to trigger a
DOM based XSS vulnerability. The main difference is, that the attack is staged
locally in the user’s browser and may not even involve the webserver (except
for providing a potentially vulnerable script).

A good defense against any form of XSS is a proper input sanitization on any user
controlled input to a website. For further reference see [URL:OWASP-Categories].

2.4.7 Cross Site Request Forgery (CSRF)

“Cross Site Request Forgery (CSRF) attacks occur when a malicious web site
causes a user’s web browser to perform an unwanted action on a trusted site.” [Zeller
08] As in reflected XSS, an attacker will trick the user into calling a linked address.
However, the technical approach is different. In a CSRF, a query or request to a
website comes from a seemingly trusted and authenticated source and is processed
by the site. The call to the site may happen without the user noticing it, e.g. because
he opened an E-Mail in an application that had the option ‘automatic display remote
content’ switched on. A typical CSRF attack for example on a home router

 © A4Q Copyright 2019 17

[URL:router-hack] could be hidden in an E-Mail that will trigger an http request to the
router: “http://admin:12345@192.168.1.1/start_apply.htm?dnsserver=66.66.66.66”. If
the router password is set to the default password (in the example 12345) the
attacker can now redirect any request for a website to wherever he wants it to go.

2.4.8 Web Vulnerabilities in Authentication and Authorization

The goal of exploiting authentication and authorization vulnerabilities usually is to
steal information such as documents, credentials or financial data. Typical
vulnerabilities include

 Leaks and flaws in custom built authentication and session management1.
Authentication may be circumvented using injections that exploit weaknesses
in the website’s script code.

 Insufficient access-checks to objects may be by-passed, e.g. if the application
uses external input to construct a path to the requested resource.

 An application checks only if a user has authenticated, but not which
resources he is allowed to access.

 Predictable cookies: Cookies are key value-pairs that are sent back and forth
between client and server. Html is a stateless protocol. That means, if an
already authenticated user sends more than one query via http or https, the
server cannot decide by means of html only whether the user is allowed to do
so. A unique cookie sent with a request, however, can tell the server that the
user has authenticated and is allowed to request a resource. If a cookie is
predictable by an attacker (e.g. because it is just the encoded user’s name) an
attacker can simply spoof the user’s identity with no effort. If a cookie is stolen,
it might be used in the same manner – especially if the cookie never expires.

2.4.9 Encrypted communication and website authenticity

A good modern encryption system implements the following principles:

 Kerckhoffs’s principle: The strength of encryption is independent of the
secrecy of the method used to encrypt a message. It should just depend on
number of available keys and the time an attacker needs to find the right key.

 The cypher text should appear random, so that statistical analysis will not
break the cypher.

 If only a part of the message changes, the whole cipher text – not only a part
must change. Else a differential analysis2 may break the cipher.

 Perfect forward secrecy [MIT17]: Each message exchange uses a different
key. Even if the cipher of an information exchange is broken in the future,
other intercepted cipher texts remain secret.

Symmetric encryption
The classical way of encrypting a message uses a key together with an algorithm to
transform a clear text into a cipher text. The backwards transformation uses the
same key and an inverse algorithm to decipher the encrypted message. Given the
key and the algorithm, encryption and decryption are fairly straightforward. Well-
known historical examples are Caesar and the Vigenère cypher. Another well-known

1 A ruleset implemented to manage the interactions e.g. between a client and a server or a user and a

web application during a session. A session is established by a login and finished by a logout.
2 If an attacker intercepts two similar message, a first message and one with a small correction, e.g.

the date, he can compare the differences in the ciphertext.

 © A4Q Copyright 2019 18

example is the one-time pad. This method uses a random different key for each
message, at minimum as long as the message itself, which must never be repeated.
If an attacker cannot get hold of or guess the key, the onetime pad is provably
unbreakable. The weakness of any symmetric method is the need to exchange keys
for encryption and decryption beforehand in a secure manner.

Asymmetric encryption
The name asymmetric encryption is owed to the fact that two different sets of keys
are used. Each user creates a pair of keys: The first key of the pair is published and
therefore called ‘public key’. It can be used by anybody who wants to send an
encrypted message to the key-owner. The second key is the ‘private key’ and used
for decryption by the key-owner. Hence, this key must be kept secret under any
circumstances. The methods in use are based on complex mathematical concepts.
Asymmetric encryption uses mathematical functions that can fast and easily calculate
the clear text from a cypher, when the proper private key is known but take a huge
amount of computing power (preferably several hundred thousand years) if this is not
the case. The method does not require a secure key exchange. Its secrecy depends
on the amount of time required to guess or calculate the private key, and on the
assumption that no algorithmic approach is found, or no computer is built, that is able
to speed up that process by several orders.

Website authenticity
Asymmetric encryption is also used for electronic signatures. Trusted Certificate
Authorities issue digital certificates. A digital certificate certifies the ownership of a
public key by the named subject of the certificate. The certificate authority is an
organization that ensures the authenticity of the certificate holder and electronically
signs the issued certificate. Browser and operating system vendors rely on the
certificates issued by such organizations. Many certificates are so-called domain
validated certificates that do not assure that any particular legal entity is connected to
a website’s certificate. An Extended Validation Certificate is issued if the legal identity
of the website owner has been established and confirmed. This type of certificate
should be used e.g. for a web shop.
A self-signed certificate has been signed using the secret key of its issuer and can be
verified by its own public key. This means that no third party such as a Trusted
Certificate Authority is involved in establishing the trustworthiness of the certificate.
Self-signed certificates should be considered as untrustworthy.

2.5 Social Engineering (20 minutes)

Social engineering in the context of information security is any psychological
manipulation of human beings applied to gain information about or access to
computer systems.

A typical social engineering attack cycle [URL:SEF] consists of 4 phases:

1. Information gathering: Collect information on the target, e.g. employees,
platform users, potential victims etc. Typically social media, company or
private websites, etc. are often used as information sources.

2. Establish relationship and build trust: Depending on the target, this can be
done by repeated phone calls, e-mails, contact via social networks etc.

 © A4Q Copyright 2019 19

3. Exploit: The attacker uses gathered information and established relationships
to infiltrate the target.

4. Execution: The ultimate attack goal is reached and tracks are covered if
possible, so that the victim may not even notice that an attack has occurred.

Common forms of social engineering are

 Phishing: An e-mail that appears to be sent from a reputable source tricks the
user into visiting a malicious website, providing personal information or
downloading malicious software. A special form is spear-phishing, which
means the phishing mail is personally adapted to the victim or a smaller group
of people. Another special form is called ‘whaling’ and is a form of spear-
phishing aimed at a company’s top management.

 SMiShing: Same as phishing, but using SMS, MMS or other messenger
services as medium.

 Vishing: The practice to elicit information or exert influence on a person via a
phone call. Attackers often impersonate customers, technical support of phone
companies or Internet service providers or employees of financial institutions.

2.6 Security in Wireless Communications (25 minutes)

In a wireless communication information is transferred from a sender to a receiver,
where both are not connected by an information carrying device such as a
conducting cable or an optical fibre. As a consequence, the transmission of
information is accessible to anybody with suitable technical means.

Threats to wireless communications
An attacker might set up a receiver and record transmissions. This is called sniffing.
It is a passive form of attack. In the case of a wireless transmission, it usually cannot
be detected. Sniffing is also applied in non-wireless networks like computer networks.
The attacker can set up a sender and try to disrupt a transmission by sending
interfering signals (DoS) or pose as a legitimate information source (spoofing).
If information is exchanged over relay stations such as radio repeaters or base
stations in mobile communication networks, or a wireless router in a computer
network, the attacker might stage a Man-in-the-Middle attack by mimicking the relay.
Especially a relay station that offers an access point to the internet, is often used in
these attack-types.

Wireless remote controls and other devices receiving commands over a wireless
channel may be vulnerable to a ‘replay attack’1: An attacker records a device’s signal
and replays it later using a suitable radio unit. A garage door or a car might be
opened by a burglar applying this technique to an insecure system.

Please note, that these potential threats to wireless communication systems are also
relevant to non-wireless systems.

Threat mitigation in wireless communications
To secure communications over a wireless channel requires at least all of the
following measures:

1 Replay attacks generally work by replaying messages from an authorized source. This type of attack
is also performed in computer networks to fool weak authorization mechanisms.

 © A4Q Copyright 2019 20

 All communications must be adequately encrypted.
 All senders and receivers must have tamper-proof identifiers.
 A secure authentication process for senders and receivers must be in place.

An appropriate encryption mitigates sniffing and the preparation of spoofing and
man-in-the-middle attacks. Tamper-proof identifiers together with adequate
authentication mitigates spoofing and man-in-the-middle attacks.

WiFi is a short name for Wireless Fidelity and describes technologies for establishing
connections within a WLAN (Wireless Large Area Network) that conform to the IEEE
802.11 standard (Vijay K. Varma on IEEE Emerging Technology portal, 2006 - 2012)
and thereby offers access points to a local net or even the internet.
Communication is established using electromagnetic waves in the UHF and SHF1
radio bands.
Open WiFi-stations fulfill none of the above requirements for a secure
communication. Identifiers such as a MAC-address (media access control address)
of a device or an SSID (Service Set identifier, i.e. the ‘name’ of the wireless network)
can be spoofed. Communication between a device and the WiFi station is not
encrypted and there is no authentication process. To secure WiFi communications
WiFi Protected Access protocols WPA2 and WPA3 must be used. These protocols
support additional identification and authentication methods such as using a
password, a username/password-combination or a digital certificate. Communication
between a device and an access point is adequately encrypted.
Bluetooth is a wireless technology standard maintained by [Bluetooth SIG] for
exchanging data directly between devices over short distances2.
An easy to use identification and authorization mechanism (device pairing) is in place
and communication is encrypted.
Flaws in the protocol or its use or poor protocol implementation may cause
vulnerabilities in Bluetooth as well as in WiFi communications.

1 UHF = Ultra High Frequency from 300 MHz up to 3 GHz, SHF from 3GHz to 40 GHz
These bands are also used by some remote controls, e.g. presenters, car keys or garage doors.
Bluetooth also uses UHF-frequencies. In the UHF spectrum, WiFi and Bluethooth typically use the
open ISM-band between 2,4 and 2,48 GHz, which is reserved for industrial, scientific and medical
radio traffic.
2 Depending on the Bluetooth class of a device, this may range between half a meter and 100 meters.

 © A4Q Copyright 2019 21

3. Security in the Software Lifecycle
(350 minutes)

Terms
Application Security Development Lifecycle Process (ASDL), CVE, CVSS, DREAD,
data flow diagram (DFD), design pattern, design principle, ethical hacking, fuzz
testing, incident response plan, misuse case, penetration test, security framework,
security plan, STRIDE, threat modelling, vulnerability assessment

Learning Objectives
(3.1.1) Describe major activities in the Security Development Lifecycle Process (K2)

(3.2.1.1) Know the relations between threat, requirement and mitigation (K1)

(3.2.1.2) Allocate potential threats in a given dataflow diagram of a system and
suggest activities that are suitable to mitigate the risk involved. (K3)

(3.2.1.3) Interpret threats and threat mitigations represented in a given misuse case
diagram. (K3)

(3.2.2.1) Relate STRIDE categories to a given vulnerability. (K3)

(3.2.2.2) Explain the purpose of DREAD and each of its five categories. (K2)

(3.3.1.1) Describe the purpose and goal of secure design principles (K2)

(3.3.1.2) Know the purpose and goal of secure design patterns (K1)

(3.3.2.1) Describe purpose and goal of secure coding (K2)

(3.4.1) Recall typical goals of security testing. (K1)

(3.4.2) Name typical entry and exit criteria for security testing. (K1)

(3.4.3) Differentiate between different types of security testing with respect to
purpose and goal. (K2)

(3.5.1) Recall why security relevant defects should be treated differently from other
defect types. (K1)

(3.5.2) Recall how the MITRE Common Vulnerabilities and Exposures (CVE)
initiative works. (K1)

 © A4Q Copyright 2019 22

3.1 The Security Development Lifecycle Process (30
minutes)

Howard and Lipner state in [Howard 06]: “Present software development methods
lack in-depth security awareness, discipline, best practice, and rigor…”. They
describe an approach adopted by Microsoft that considers system security in every
phase of the software lifecycle.
An Application Security Development Lifecycle Process (ASDL) introduces security
activities in all steps required to develop, manage, operate and maintain an
application. It also covers infrastructure management as well as audit activities. A
generalized process is discussed in [ISO/IEC 27034].
The ASDL is not a sequential model. It describes which process phases and
disciplines must be tailored into an existing lifecycle. Although the cited standard
focuses on application security, the phases apply as well to system development and
systems engineering1. A lifecycle-model that ensures an adequate level of security
requires at least (e.g. [ISO/IEC 27034] and [Howard 06]):

1. Training: All personnel involved (e.g. developers, testers and program
managers) in building an application undergo basic security training. Topics
for basic training are privacy, threat modeling, secure design, coding and
security testing. Advanced trainings on these topics are added as required.

2. Requirements include application security requirements as well as process
requirements. The latter incorporate when and how often threat assessments
are executed or what type of security testing is required in different life cycle
activities. In this phase, the project team must also define item pass/fail criteria
for security related defects that will be monitored throughout the project2.

3. Design: The application design phase requires the identification of attack
surfaces and threat modeling (see section 3.2 of this syllabus). The purpose of
these activities is to uncover security flaws in the application’s architecture and
to identify where security mechanisms must be implemented.

4. Implementation activities enforce the use of approved tools for static analysis
during coding. Unsecure functions are discovered and banned. This ensures
that known weaknesses remain in the code and prevents insertion of new
weaknesses into the code.

5. Verification: All verification phases include specific security test activities, such
as dynamic analysis and fuzz testing (see section 3.4.2). Verification has to
include risk management, at least a review of all attack surfaces. The review
ensures that the product is suitably protected, and no new attack vectors have
been uncovered by testing.

6. Release activities in this context are the actions required to prepare a release.
They include a final review of all security activities and their success. It
ensures that the ASDL process has been followed correctly throughout all
development phases. In an agile environment it can be done incrementally for
each sprint. Before an application is released, the responsible project team
must also define an incident response plan for the time after release. The plan
describes required actions on who must be informed, how to analyze the
incident and to mitigate or eventually eliminate the corresponding threat.
Finally, the release configuration should be archived in a way that allows

1 See [NIST-SP-800-160] for comparison.
2 See ‚bug bars’ in the Microsoft Security Development Process [Howard 06].

 © A4Q Copyright 2019 23

detecting alterations by third parties during or after shipment (e.g. download).
A common way to do this is ‘signing’ a release using a cryptographic hash
[URL:Signing].

7. Main Response activities involve establishing a response team and
implementing the response plan for the released product.

A security plan after [NIST 800-39] can describe how these activities are
implemented for a given project. The security plan may refer to a test plan for testing
activities and vice versa. In agile approaches, the activities must be reflected e.g. in
team charters, definitions of ready, definitions of done and acceptance criteria.
A security plan should also be compliant to the organization’s security framework.
A security framework is a set of inputs, desired outcomes, policies, activities and
roles to identify, detect, protect against and respond to threats for an organization’s
assets. It should also include recovery measures [NIST 2018].

3.2 Threat modeling & Requirements Engineering
(145 minutes)

Threat models are used to identify security requirements, requirements for mitigation
and non-requirements, if a threat cannot be mitigated (see chapter 12 in [Shostack
14]). They are also used to assess mitigative actions, as well as to identify and
prioritize test conditions for security tests. There is a strong interplay between
assessing threats, identifying possible mitigations and defining requirements
[Shostack 14]. Therefore, these tasks have to be performed iteratively.

Threat modeling is any structured approach that identifies, rates and manages
security risks associated with a system or application. It is a strictly risk based
approach and incorporates the steps

 Decompose the system and identify attack surfaces and corresponding threats
 Determine and rate the threats
 Mitigate

The methods presented in this section are typically applied in the ASDL requirements
and design phase.
Guidance on how to identify and analyze threats and devise appropriate counter
measures on an organizational level can be found in [ISTQB-AL-SEC] and in [NIST-
SP-800-37]. [Shostack 14] describes a comprehensive approach to threat modeling,
defining security requirements and implementing preventive and mitigative actions.

3.2.1 Threat identification

Use case diagrams help to identify threat agents and attack vectors in early design
phases. To this end existing use cases are extended by a description of a behavior
that the system/entity owner does not want to occur [Sindre 05]. The latter is called a
misuse-case. In addition the set of actors from the original use cases is extended by
mis-actors. A mis-actor is the opposite of an actor and the system is not supposed to
support that type of actor.
The derivation of misuse cases from use cases is accomplished in 5 steps [Sindre
05]:

1) Describe the normal actors and use cases

 © A4Q Copyright 2019 24

2) Identify major mis-actors and misuse cases
3) Investigate and model the relations between use cases and misuse cases.
4) Introduce additional use cases that detect, prevent or mitigate misuse cases.
5) Elicit and document detailed security requirements from the revised use case

models.
From a requirements and development perspective, misuse cases support the
identification of required security functions.
From the test perspective, misuse cases from step 2 and use cases from step 4
represent test conditions. Both can be used to develop penetration test scenarios.

Data flow diagrams (DFD) support threat modeling on a system architecture level.
A data flow diagram incorporates [DeMarco 78], [Howard 06]

 Data storage facilities – represented by two horizontal, parallel lines.
 Entities delivering or receiving input or output – depicted by rectangles.
 Functions or (sub-)systems that process data and data flows – shown as

circles in a DFD.
 Data flows between the components above – modeled using continuous lines

with an arrow tip
 System boundaries – indicated by dotted lines [Pohl 11]

DFDs help to identify which data flows may be tainted and where this could cause
harm. Software architects and developers can derive from these diagrams where
security mechanisms must be provided. A tester can derive which external and
internal system interfaces must undergo security testing.

Threat modeling in later (e.g. detailed) design and implementation phases requires a
deep technical understanding of data structures, memory layouts, programming
languages and communication protocols in use. This requires the skills of a
dedicated hacker and is excluded from here

3.2.2 Threat determination and rating

Once attack surfaces and related threats have been identified, their relation should
be further analyzed, classified and rated.
To support this, Microsoft adopted the STRIDE methodology ([URL:STRIDE],
[Howard 06], [Howard 02]). For each identified threat one of the following six
categories is determined:

 S – Spoofing Identity: Any threat action aimed at attaining another entity’s
authentication information and using it. An example for a threat in this
category would be a user interface with unsecure certification mechanisms.

 T – Tampering may occur when an attacker could modify or change persistent
data. Stored XSS and installation of malware are examples that fall in this
category.

 R – Repudiation: Malicious actions or system weaknesses that prevent a later
analysis. Especially missing functions to trace legal as well as illegal
transactions make repudiation possible.

 I – Information Disclosure: An attacker can read information without the
required level of access. A specific example is the already mentioned
Heartbleed-vulnerability.

 D – Denial of Service: See chapter 1 for an explanation.

 © A4Q Copyright 2019 25

 E – Elevation of Privilege: This category applies if a system or application
allows actions aimed at elevating the authorized access level to one that is
entitled to privileged information or services, e.g. admin rights.

DREAD [Howard 02] considers 5 risk factors. For a given threat, each factor can be
rated on a scale reaching from low (1) over medium (2) to high (3). The values are
added up to estimate the overall risk rating for the threat. A value ranging from 12 to
15 indicates a high risk, values ranging from 8 to 11 a medium risk and all lower
values (5 to 7) a low risk (see [URL:DREAD] as reference).
The factors in DREAD translate to

 D – Damage potential. Potential damage always depends on an application’s
or system’s context. Accordingly, each project must define its own rules for
determining the damage level.

 R – Reproducibility. A high reproducibility (3) means that the attack requires
no specific time window. Reproducibility is medium (2) if the attack is only
possible at specific times, e.g. during a backup. If the attack is very difficult to
perform, even with knowledge of a corresponding vulnerability, reproducibility
is set to low (1)

 E – Exploitability rates the skill level required for executing the attack. High (3)
exploitability is assumed if a script kiddie could perform the attack. If an exploit
requires a dedicated hacker, exploitability is medium (2). It is low (1) if only a
skilled hacker can perform the attack.

 A – Affected users. Here numbers of affected user and typical vs. untypical
configurations have to be considered. A high rating (3) is suggested if all or
key users are threatened under default configurations. Medium (3) is applies
to non-default configurations or when only some users are threatened. Low is
used when the weakness is effective only for uncommon features or
configurations.

 D – Discoverability for the attacker. Discoverability must be rated high (3) if the
corresponding vulnerability and its potential malicious use is common
knowledge or could easily become so. Since this can be the case with any
vulnerability, it is good practice to rate this factor either as high or low.
Low discoverability (1) means that an attacker would need an intimate
knowledge of the internal workings of the system or application1.

DREAD often leads to subjective results and its use is not any longer recommended
by Microsoft [Shostack 14]. Nevertheless, it is easy to use and contains all major
factors that are required for rating the severity of a vulnerability.

1 Please note that discoverability is not the same as exploitability. For example: An apt C programmer

might have difficulties to spot a weakness in a Java code. But once pointed at it and given some time,
he will very probably be able to write an exploit.

 © A4Q Copyright 2019 26

3.3 Secure Design and Secure Coding Principles
(95 minutes)

3.3.1 Secure Design

Identifying and applying suitable secure design techniques is part of the third group
of ASDL-activities. Here secure design principles and secure design patterns should
be applied.

Design principles
Design principles are guidelines that help to avoid common design flaws, such as the
possibility to circumvent an existing security feature.
At least the following principles should be considered1:

 Complete mediation: Every access to every object must be checked for
authorization.

 Least privilege: Only give the privileges required to perform a task for the
required time period. Never more. Never longer.

 Need-to-know: Access to data should not be broader than what is required for
legitimate purposes.

 Auditability and recovery: Events must be logged so that attacks can be
analyzed. Data and services must be protected against loss and denial of
service.

 Secure the weakest link: Reduce attack surface in an efficient manner. Start
building defenses for undefended access points to your system, before
improving existing defenses.

 Defend-in-depth-and-diversity: Apply several layers of physical, technical and
administrative controls to defend a system

 No security by obscurity: Do not rely on the secrecy of your design or
implementation as only method of providing security. This will fail eventually.

 Secure defaults: The default configuration of a software or system should
correspond to the maximum security settings for the system.

 Fail in a secure manner: Programs have bugs and are prone to operating
errors. Identify and mitigate according security risks so that even if the system
or parts of it fail, a defined level of security can still be maintained.

 Input validation: All input should be validated by a system, before it is used.
 Output encoding: Prevent that the output from one system could be used for

an injection attack on another system.
 Separate code and data: Data should never be allowed to be misinterpreted

as executable code2.
 Usable security: Support users in making secure choices when working with

the system. Try to design the system in a way, that its main uses and security
needs do not collide.

1 See also section 1.3.
2 The same is of course valid for a mix-up of user-input and configuration data, as e.g. in some CSS-
injections – see e.g. https://www.owasp.org/index.php/Testing_for_CSS_Injection_(OTG-CLIENT-
005).

 © A4Q Copyright 2019 27

Design patterns
A design pattern is a general reusable solution to a common design problem. Secure
design patterns aim at avoiding or mitigating the accidental insertion of common
vulnerabilities into a system.
Existing certified implementations for common design patterns should (if available)
be used for

 Identification and authentication
 Authorization, e.g. in session management and access control.
 Encryption

Without proper expertise and due diligence, self-designed solutions may incorporate
severe design flaws and resulting vulnerabilities in deployed products and services.

3.3.2 Secure Coding

Secure coding rules aim at avoiding typical security relevant programming mistakes
that may lead to

 Insecure handling of inputs and outputs
 Insecure handling of storage and memory, that may for instance lead to buffer

overflows
 Insecure handling of race conditions that may cause crashes, unreliable

checks for authorization like wrong order of check for authorization and access
to data

 Insecure handling of permission and ressources, e.g. unspecified default
permissions

An organization should implement rules for secure coding that incorporate

 General secure design principles and patterns (see section 3.3.1 for
examples).

 Programming language specific rules1 to avoid the use of insecure language
constructs and language specific mistakes. [URL:CERT SEI] gives examples
for C and C++.

 Regular and compulsory use of static analysis and code reviews (see also
section 3.4) to enforce adherence to the rules.

3.4 Security Testing (60 minutes)

This syllabus focuses on major security objectives as well as a practical
understanding of threat assessments.
An in-depth discussion of security testing processes, a detailed view on security
testing goals and an organization wide security risk management process is
discussed in [ISTQB CTAL-SEC].

Typical goals for security testing are:

 Increase security awareness and create a business case for security
measures by showing the possible outcomes of lack of security.

 Identify gaps in security in system architectures, designs, operations and
organizational policies and processes.

1 Including compiler settings

 © A4Q Copyright 2019 28

 Suggest improvements to existing security mechanisms.
 Meet regulatory compliance.
 Discover new threats.
 Discover weaknesses in programs, systems and procedures.

3.4.1 Security testing objectives, entry- and exit-criteria

Test objectives
Three major factors govern the specification of security testing objectives ([Palmer
01], [Ruef 07]):

 The asset that must be protected.
 Against what the asset must be protected
 The budget available for testing and improving the asset protection.

In order to develop verifiable security testing objectives, a detailed description of the
assets and related systems and services is required. General assertions as ‘the
database’, ‘the web shop services’ will not do (([Palmer 01], [Ruef 07]).
For identifying and describing against what to protect, a description of threat agents
and attack vector e.g. in terms of CIA (see chapter 1) or STRIDE (see section 3.2) is
required. Security tests require a suitable budget: A budget that is too low, may only
permit a conceptual audit (see below), where a full-fledged penetration test is
required. A risk based approach that applies for example STRIDE and DREAD will
help to focus the budget.

Entry and exit criteria
Certain criteria must be met before any security testing may start.
The minimum entry criteria for starting any security testing are:

 A permission and mandate to perform the tests as described in a security
testing plan1. For penetration tests, the permission must come from an
authorized body in a legitimate form. Sponsor and penetration testers must
agree on it. This type of permission is often referred to as the ‘get out of jail-
free-card’ in allusion to a well-known cardboard game [Palmer 01].

 The test objectives, target systems and the test scope are clearly defined.
 Accountable contact persons for each target system in the organization are

identified, involved and available.
 An appropriate vulnerability management including vulnerability categories is

defined.

Exit criteria ensure that all security-testing objectives are met. In an ASDL, exit
criteria should be defined for each phase in terms of test item coverage and item
pass/fail criteria.
Coverage criteria may include

 which interfaces must be covered with fuzz tests,
 where a penetration test on system test level must have been performed,
 which regression tests from prior releases must have been executed

Pass/fail criteria may determine

 which types of security issues must be fixed before release.
 which types of privacy issues must be fixed before release

1 Contents of such a plan are described for instance in [CT AL-SEC]

 © A4Q Copyright 2019 29

Penetration test results often include suggestions how to fix a discovered
vulnerability. This is similar to many types of efficiency testing that aim at
performance optimization by suggesting performance improvements.

3.4.2 Security Testing Types

Security audit
Organizational security audits ([RUEF 07], [ISTQB CTAL-SEC]) evaluate an
organizations processes and procedures with respect to a set of defined security
policies and goals. In the ASDL organizational audits should be part of the
requirements phase. A typical review object is the security plan. The audit must
ensure that all development phases include adequate activities for building a secure
product. An organizational audit of a software project should be repeated in the
release phase as part of the final security review.
Conceptual audits [RUEF 07] assess if a proposed or existing solution offers an
adequate level of security. Conceptual audits can be executed independently or as
part of a vulnerability assessment. In the ASDL conceptual audits should be part of
the design phase and should be repeated on a regular basis in implementation,
verification and release. For an already existing product they should be integrated
into the change management process.
Organizational and conceptual audits are reviews, i.e. static tests.

Vulnerability assessment
A technical vulnerability assessment ([RUEF 07], [Weidman 14]) aims at detecting
vulnerabilities as economically as possible. It may involve conceptual audits and
static analysis, as well as dynamic techniques. Dynamic tests may include
vulnerability scans, fuzz testing and even full-scale penetration testing. The
techniques actually applied depend on the context of testing [ISTQB_CTFL] and
concentrate on specific goals.
Vulnerability assessments should be an integral part of any SDLC, starting at the
latest in the design phase.
Vulnerability assessments are also a common task in maintenance testing – see
[ISTQB_CTFL].

Static analysis
A static analysis evaluates a software development artifact without execution,
typically with the help of a tool.
Static analysis in developing secure systems and applications can detect insecure
functions used by a programmer. Examples for analyzers that can detect such
constructs are the clang-analyzer for C/C++ and FindBugs [URL:FindBugs] and PMD
[URL:PMD] for Java. A common approach is the taint flow analysis: The static
analyzer transforms the source code into a model of the software and locates areas
in the software that may be vulnerable to injections from the outside. Taint flow
analysis uses techniques that are similar to those applied for data flow analysis (see
[ISTQB CTAL-TTA]). A tool example that uses static taint-flow analysis for php-code
is [URL:RIPS].
Static analysis should be applied routinely during any software and system
development activities.

 © A4Q Copyright 2019 30

Dynamic analysis
In security testing dynamic analysis is performed in different contexts. It is applied to
monitor code as it executes, e.g. in dynamic taint analysis and dynamic symbolic
execution [Schwartz10]. Dynamic taint analysis has the same goal as static taint
analysis. It can detect vulnerability against injections in an application or system.
Another form of dynamic analysis is vulnerability scanning. Vulnerability scans check
computers, computerized systems, networks or applications for known or potential
weaknesses. A vulnerability scanner may discover unpatched and hence insecure
program or OS versions, insecure configurations such as file or access permission
settings, turned off authentication mechanisms and many more. Tools in use range
from network scanners to penetration testing frameworks. Both may possess large
databases of executable exploits for different targets, which can be run automatically
to uncover known vulnerabilities. Dynamic analysis should be part of verification,
release and response activities, as well as maintenance testing.

Fuzz testing
Fuzz testing verifies an application’s input validation capabilities. In a fuzz test,
malformed inputs are created with the help of a tool. These inputs are fed to the
application or system under test, to see how it reacts. If the application fails, a
potentially security relevant bug has been found. [Howard 06] names three
categories of fuzz testing:

 File format parsers that manipulate document, executable and image file
types.

 Network protocol parsers that manipulate data package contents and
package sequences.

 Application Programming Interface (API) parsers and miscellaneous parsers
for specific API’s or purposes.

In ‘dumb fuzzing’ the input data is changed at random. In ‘smart fuzzing’ specific
relevant parts of a data structure are changed. Test design techniques like
equivalence partitioning and boundary value analysis support smart fuzzing
approaches.

Penetration testing and Ethical hacking
Penetration testing (penetration testing) refers to any “test methodology intended to
circumvent the security function of a system” [NIST-SP-800-160]. As such, it may be
understood as an umbrella term for all types of testing mentioned above. The term is
often used as a synonym for ethical hacking. Ethical or white hat hacking is widely
understood as performing an authorized attack on an existing computer system or
network to assess its security [Palmer 01]. White hat hacking may apply all testing
types mentioned above as well as social engineering techniques to break into a
system. The typical ethical hacking approach is to take the view of a real malicious
attacker and demonstrate what the attacker could do – without anybody noticing the
attack. This syllabus sees penetration testing in this meaning – as a proof of concept
that a specific real attack is possible.
Security testing in its different forms should be applied throughout the software
lifecycle. In the ASDL penetration tests may be performed during release and
response. In fact, many companies run a bug bounty program1 in alignment with their
incident response plan.

1 A program that offers individuals recognition and maybe money for reporting bugs.

 © A4Q Copyright 2019 31

3.5 Defect management and classification (20 minutes)

Defect management supports software security management throughout the lifecycle
of a product or service. Defect management for security related defects should be set
up early in the requirements phase of the ASDL. Security relevant defects require
special access rights. Only authorized and trusted personal should have admission to
read how an existing vulnerability can be exploited. Such details should also never
be included in a general test report [Palmer 01]. Also a security defect classification
scheme should be adopted early on. Examples for classifications in use are CIA,
STRIDE, DREAD or different versions of the Common Vulnerability Scoring System
CVSS [NISTIR 7946]. This supports risk management and required re-assessments
of security and organizational audits.

Incident management also plays a crucial role in the response phase of the ASDL. It
is a real challenge to inform customers about vulnerabilities. Due to this,
organizations like Apple, Microsoft, Red Hat and many others publish vulnerabilities
and their remedies via the MITRE CVE list. The MITRE corporation is a not-for-profit
company that operates multiple research and development centers [URL:MITRE] in
the United States. CVE is short for ‘Common Vulnerabilities and Exposures’. The
CVE list assigns a unique identifier to each posted vulnerability.
The process begins with the discovery of a potential security vulnerability [URL:CVE-
FAQ]. The next step is to request a CVE identifier (CVE ID) from a CVE numbering
authority (CNA). A CNA is an organization1 authorized by MITRE to assign an ID to a
vulnerability and publish it on the CVE list. A complete list of CNAs is on [URL:CNA].
Certain issues require a software manufacturer to contact a specific CNA. The
current list can be found under [URL:CVE-List].
The National Institute of Standards and Technology (NIST) also maintains a national
vulnerability database [URL:NVD] that contains all CVE list entries.

1 Including MITRE

 © A4Q Copyright 2019 32

4. References

4.1 ISTQB Documents
[ISTQB_CTFL] ISTQB Foundation Level Syllabus, Version 2011

[ISTQB CTAL-TTA] Certified Tester Advanced Level Technical Test Analyst, Version
2012

[ISTQB CTAL-SEC] Certified Tester Advanced Level Syllabus Security Tester,
Version 2016

4.2 Standards
[CC-PART-1] Common Criteria for Information Technology Security Evaluation, Part
1: Introduction and general model, Version 3.1, Revision 4, September 2012

[CC-PART-2] Common Criteria for Information Technology Security Evaluation Part
2: Security functional components, Version 3.1, Revision 4, September 2012

[CC-PART-3] Common Criteria for Information Technology Security Evaluation, Part
3: Security assurance components, Version 3.1, Revision 4, September 2012

[ISO 25010] Systems and software engineering –
Systems and software product Quality Requirements and Evaluation
(SQuaRE) – System and software quality models

[ISO/IEC 27001] Information technology — Security techniques — Information
security management systems — Requirements, 2013.

[ISO/IEC 27034-1] ISO/IEC 27034-1: Information technology – Security techniques –
Application security – Part 1: Overview and concepts

[ISO 31000:2018] ISO 31000:2018, Risk management – Guidelines

[NIST 2018] Framework for Improving Critical Infrastructure Cybersecurity.
Version 1.1, NIST, 2018

[NIST-SP-800-37] NIST Special Publication 800-37: Guide for Applying the Risk
Management Framework to Federal Information Systems, Rev. 1, 2010, updated
2014.

[NIST-SP-800-39] NIST Special Publication 800-39: Managing Information Security
Risk, Organization, Mission, and Information System View, March 2011

[NIST-SP-800-160] NIST Special Publication 800-160 Systems Security Engineering,
NIST, November 2016

[RFC 1122] Requirements for Internet Hosts -- Communication Layers,
url: https://tools.ietf.org/html/rfc1122, last retrieved July 14, 2017

https://tools.ietf.org/html/rfc1122

 © A4Q Copyright 2019 33

[RFC 1123] Requirements for Internet Hosts -- Application and Support,
url: https://tools.ietf.org/html/rfc1123, last retrieved July 14, 2017

4.3 Books
 [DeMarco 78] Tom DeMarco, Structured Analysis and System Specification,
Yourdon Inc., New York, 1978

[Eck 14] Claudia Eckert, IT-Sicherheit – Konzepte – Verfahren – Protokolle,
Oldenbourg Verlag, 9th edition, 2014

[Howard 02] Michael Howard and David LeBlanc, Writing Secure Code, Microsoft
Press, 2002

[Howard 06] Michael Howard and Steve Lipner, The Security Development
Lifecycle, Microsoft Press, 2006

[MIT03] Kevin Mitnick, William L. Simon, The Art of Deception: Controlling the
Human Element of Security, Wiley Publishing Inc, 2003

[MIT17] Kevin Mitnick, The Art of Invisibility, Little, Brown and Company, New York,
Boston, London, 2017

[Pohl 11] Klaus Pohl & Chris Rupp, Requirements Engineering Fundamentals,
Rocky Nook Computing, 2nd edition, April 2015

[Ruef 07] Marc Ruef, Die Kunst des Penetration Testing – Handbuch für
professionelle Hacker, C&L Computer und Literatur Verlag, Böblingen, 2007

[Shostack 14] Adam Shostack, Threat Modeling, John Wiley & Sons, 2014.

[Weidman 14] Weidman, G., Penetration Testing. A Hands-On Introduction To
Hacking, No Starch Press, 2014.

[Whit03] James A. Whittaker, Howard H. Thompson, How to break Software
Security, Addison Wesley, 2003

4.4 Other References (Articles and Web-Resources)

[Bluetooth SIG] Website of the Bluetooth Special Interest Group,
https://www.bluetooth.com/ last retrieved on June 25, 2019.

[ENISA] ENISA Glossary, URL: https://www.enisa.europa.eu/topics/threat-risk-
management/risk-management/current-risk/risk-management-
inventory/glossary#G51, last retrieved on July 11, 2017.

[Lamport 78] Leslie Lamport, The implementation of reliable distributed multiprocess
systems, Computer Networks, Volume 2, Issue 2, Pages 95-114, Elsevier, May 1978.

[NISTIR-SP-800-53] Security and Privacy Controls for Federal Information Systems

https://tools.ietf.org/html/rfc1123
https://www.bluetooth.com/
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/glossary#G51
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/glossary#G51
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/glossary#G51

 © A4Q Copyright 2019 34

and Organizations, NIST Special Publication 800-53, Revision 4, 2013 with updates
from 2015. See http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
53r4.pdf

[NISTIR 7946] Joshua Franklin and Harold Booth, CVSS Implementation Guidance,
NISTIR 7946, NIST, April 2014

[Palmer 01] C.C. Palmer, Ethical hacking, IBM Systems Journal, Vol. 40, No. 3, 2001

[Saltzer 75] Saltzer, Jerome H. & Schroeder, Michael D.: The Protection of
Information in Computer Systems., Proceedings of the IEEE 63, September 1975

[Schwartz 10] Schwartz et al., All You Ever Wanted to Know about Dynamic Taint
Analysis and Forward Symbolic Execution (but Might Have Been Afraid to Ask), SP
'10 Proceedings of the 2010 IEEE Symposium on Security and Privacy, pp. 317-331,
May 2010

[Sindre 05] Sindre and Opdahl, Eliciting Security Requirements with Misuse Cases,
Requirements Engineering, 10: 34 - 44, 2005

[URL:CAPEC] Common Attack Pattern Enumeration and Classification — CAPEC™,
https://capec.mitre.org/index.html, retrieved on July 14, 2019.

[URL:CERT SEI] SEI CERT Coding Standards,
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards,
retrieved on July 11, 2019

[URL:CISA alerts] Cybersecurity and Infrastructure Security Agency (CISA), Alerts,
https://www.us-cert.gov/ncas/alerts, retrieved on June 25, 2019.

[URL:CNA] https://cve.mitre.org/cve/request_id.html, retrieved on August 3, 2017

[URL:CVE-FAQ] https://cve.mitre.org/about/#how_cve_works,
retrieved on August 3, 2017

[URL:CVE-List] https://cve.mitre.org/cve/ , retrieved on August 3, 2017

[URL:DREAD] https://msdn.microsoft.com/en-us/library/ff648644.aspx,
last retrieved on August 3, 2017

[URL:FindBugs] http://findbugs.sourceforge.net/, last retrieved on July 31, 2017

[URL:MITRE] https://www.mitre.org/, last retrieved on August 3, 2017

[URL:MSDL] https://www.microsoft.com/en-us/sdl, last retrieved on June 24, 2019

[URL:OWASP-Categories] https://www.owasp.org/index.php/Category:Attack,

[URL:PMD] http://pmd.sourceforge.net/pmd-5.2.3/, last retrieved on July 31, 2017

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://capec.mitre.org/index.html
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.us-cert.gov/ncas/alerts
https://cve.mitre.org/cve/request_id.html
https://cve.mitre.org/about/#how_cve_works
https://cve.mitre.org/cve/
https://msdn.microsoft.com/en-us/library/ff648644.aspx
http://findbugs.sourceforge.net/
https://www.mitre.org/
https://www.microsoft.com/en-us/sdl
https://www.owasp.org/index.php/Category:Attack
http://pmd.sourceforge.net/pmd-5.2.3/

 © A4Q Copyright 2019 35

[URL:RIPS] http://rips-scanner.sourceforge.net/, last retrieved on July 31, 2017

[URL:router-hack] http://www.heise.de/security/meldung/Mail-hackt-Router-17, last
retrieved on July 18, 2014

[URL:SEF] https://www.social-engineer.org/framework/general-discussion/, last
retrieved on July 14, 2017

[URL:STRIDE] https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx,
retrieved on August 2, 2017

[URL:Signing] Introduction to Code Signing, Microsoft Developer Network,
https://msdn.microsoft.com/en-us/library/ms537361(v=vs.85).aspx , last retrieved on
July 31, 2017

[URL:US-CERT-DOS] https://www.us-cert.gov/ncas/tips/ST04-015, last retrieved on
July 14, 2017
[Zeller 08] William Zeller, Edward W. Felten: Cross-Site Request Forgeries:
Exploitation and Prevention, Revision 10/15/2008, Princeton University, 2008, last
retrieved July 23, 2017.

http://rips-scanner.sourceforge.net/
http://www.heise.de/security/meldung/Mail-hackt-Router-17
https://www.social-engineer.org/framework/general-discussion/
https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
https://msdn.microsoft.com/en-us/library/ms537361(v=vs.85).aspx
https://www.us-cert.gov/ncas/tips/ST04-015

