

IREB Certified Professional for Requirements Engineering

‑ Advanced Level RE@Agile ‑

Syllabus

Version 1.0.2
September 24, 2018

Terms of Use:

1. Individuals and training providers may use this syllabus as a basis for seminars,

provided that the copyright is acknowledged and included in the seminar materials.

Anyone using this syllabus in advertising needs the written consent of IREB for this

purpose.

2. Any individual or group of individuals may use this syllabus as basis for articles, books

or other derived publications provided the copyright of the authors and IREB e.V. as the

source and owner of this document is acknowledged in such publications.

© IREB e.V.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system

or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or

otherwise, without either the prior written permission of the authors or IREB e.V.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 2 / 36

Acknowledgements

This syllabus has been written by: Bernd Aschauer, Lars Baumann, Peter Hruschka, Kim

Lauenroth, Markus Meuten, Sacha Reis and Gareth Rogers.

Review by Rainer Grau. Review comments were provided by Jan Jaap Cannegieter, Andrea

Hermann, Uwe Valentini and Sven van der Zee. English review by Gareth Rogers.

Approved for release on February 19, 2018 by the IREB Council upon recommendation of Xavier

Franch.

We thank everybody for their involvement.

Copyright © 2017-2018 for this syllabus is with the authors listed above. The rights have been

transferred to the IREB International Requirements Engineering Board e.V.

Preamble

Purpose of the Document

This syllabus defines the advanced level of the certification "RE@AGILE” established by the

International Requirements Engineering Board (IREB). The syllabus provides training providers

with the basis for creating their course materials. Students can use the syllabus to prepare

themselves for the examination.

Level of Detail

The level of detail of this syllabus allows internationally consistent teaching and examination. To

reach this goal, the syllabus contains the following:

 General educational objectives,

 Contents with a description of the educational objectives and

 References to further literature (where necessary).

Educational Objectives / Cognitive Knowledge Levels

Each module of the syllabus is assigned a cognitive level. A higher level includes the lower levels.

The formulations of the educational objectives are phrased using the verbs "knowing" for level

L1 and "mastering and using" for level L2. These two verbs are placeholders for the following

verbs:

 L1 (knowing): enumerate, characterize, recognize, name, reflect

 L2 (mastering and using): analyze, use, execute, justify, describe, judge, display, design,

develop, complete, explain, exemplify, elicit, formulate, identify, interpret, conclude from,

assign, differentiate, compare, understand, suggest, summarize

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 3 / 36

All terms defined in the glossary have to be known (L1), even if they are not

explicitly mentioned in the educational objectives. The glossary is available for

download on the IREB homepage at https://www.ireb.org/downloads/#re-agile-

glossary

This syllabus uses the abbreviation "RE" for Requirements Engineering.

Structure of the Syllabus

The syllabus consists of six chapters. One chapter covers one educational unit (EU). For each

EU, teaching time and practice time are suggested. They are the minimum a course should invest

for that EU. Training companies are free to devote more time to the EUs and the exercises, but

make sure that the proportions between the EUs are maintained. Important terms of each

chapter are listed at the beginning of the chapter. They are either defined in the glossary or

explained in the chapter.

Example: EU2 A Clean Project Start (L2)
Duration: 60 minutes + 30 minutes exercise
Terms: Product Vision, Product Goal, Stakeholder, Persona, Product Scope, System

Boundary

This example shows that Chapter 2 contains education objectives at level L2 and 90 minutes are

intended for teaching the material in this chapter.

Each chapter can contain sub-chapters. Their titles also contain the cognitive level of their

content.

Educational objectives (EO) are enumerated before the actual text. The numbering shows to

which sub-chapter they belong.

Example: EO 3.3.1 Mastering and using the concepts of telling INVEST user stories

This example shows that educational objective EO 3.3.1 is described in sub-chapter 3.3.

The Examination

This syllabus is the basis for the examination for the RE@Agile Advanced Level.

The format of the examination is multiple-choice as well as an assessed written assignment; the

details are set out in the examination regulations.

Examinations can be held immediately after a training course, but also independently from

courses (e.g. in an examination center). A list of IREB licensed certification bodies can be found

on the website: http://www.ireb.org

!

A question in the examination can cover material from several chapters of the

syllabus. All chapters (EU 1 to EU 6) of the syllabus can be examined. !

https://www.ireb.org/downloads/#re-agile-glossary
https://www.ireb.org/downloads/#re-agile-glossary
http://www.ireb.org/

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 4 / 36

Version History

Version Date Comment Author

1.0.0 February 20, 2018 Initial Version Bernd Aschauer,

Lars Baumann,

Peter Hruschka,

Kim Lauenroth,

Markus Meuten,

Sacha Reis and

Gareth Rogers

1.0.1 September 11, 2018 Typos fixed

A couple of EO’s reformulated to

meet standard style. No change

content wise.

Statement on important terms

clarified.

Peter Hruschka,

Stefan Sturm

1.0.2 September 24, 2018 Credits for reviewers added Stefan Sturm

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 5 / 36

Content

Acknowledgements ... 2

Preamble .. 2

Version History ... 4

EU 1 What is RE@Agile (L1) .. 8

EU 2 A Clean Project Start (L2) ... 11

EU 2.1 Vision and Goal Specification .. 11

EU 2.2 Specifying the System Boundary ... 12

EU 2.3 Stakeholder Identification and Management ... 14

EU 2.4 Balancing of Vision and Goals, Stakeholders, and Scope ... 15

EU 3 Handling Functional Requirements (L2) .. 16

EU 3.1 Different levels of requirements granularity .. 16

EU 3.2 Identification, documentation and communication of functional requirements 17

EU 3.3 Working with user stories .. 18

EU 3.4 Splitting and grouping techniques .. 19

EU 3.5 Knowing when to stop decomposing ... 20

EU 3.6 Project and Product Documentation of Requirements ... 21

EU 4 Handling Quality Requirements and Constraints (L2) ... 23

EU 4.1 Understanding the importance of quality requirements and constraints 23

EU 4.2 Adding Precision to Quality Requirements ... 24

EU 4.3 Quality Requirements and Backlog ... 24

EU 4.4 Making Constraints Explicit ... 25

EU 5 Prioritizing and Estimating Requirements (L2) .. 26

EU 5.1 Determination of business value ... 26

EU 5.2 Business Value, Risks, and Dependencies .. 27

EU 5.3 Estimating User Stories and Other Backlog Items .. 27

EU 6 Scaling RE@Agile (L2) .. 30

EU 6.1 Roadmaps and Large-Scale Planning (L2) ... 30

EU 6.2 Organizing teams to handle larger and more complex problems (L2) 30

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 6 / 36

EU 6.3 Examples of scaling frameworks (L1) ... 31

DEFINITONS OF TERMS, Glossary (L2) ... 33

REFERENCES .. 34

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 7 / 36

About this Advanced Level Module RE@Agile:

The Advanced Level Module RE@Agile is addressed to Requirements Engineers and agile

professionals. It focuses on understanding and applying practices and techniques from the

Requirements Engineering discipline in agile development processes as well as understanding

and applying concepts, techniques and essential process elements of agile approaches in

Requirements Engineering processes. Certificate holders with Requirements Engineering

knowledge will be able to work in agile environments, whilst agile professionals will be able to

apply proven Requirements Engineering practices and techniques within agile projects.

An RE@Agile Advanced Level Certificate holder:

 is familiar with the terminology of Requirements Engineering and agility;

 can successfully plan, implement and perform Requirements Engineering techniques and

methods in agile projects;

 can successfully plan, implement and perform techniques and methods from agile

approaches in Requirements Engineering activities;

 can combine agile approaches and Requirements Engineering techniques to the benefit

of all stakeholders.

Prerequisites

As for any other Advanced Module of the IREB, a prerequisite for attending the exam of the

Advanced Level RE@Agile is having a CPRE FL certificate. In addition, we highly recommend

having at least one of the agile certificates (i.e. the RE@Agile Primer or any Scrum certificate) or

similar knowledge about agile approaches.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 8 / 36

EU 1 What is RE@Agile (L1)

Duration: 15 minutes

Terms: stakeholder cooperation, iterative Requirements Engineering, incremental
Requirements Engineering, product owner

Educational Objectives:
EO 1.1 Knowing a definition of RE@Agile
EO 1.2 Knowing the goals of RE@Agile
EO 1.3 Knowing that the responsibility for good requirements within SCRUM is with the

product owner

IREB defines RE@Agile [IREB2017] as a cooperative, iterative and incremental approach with

four goals:

1. knowing the relevant requirements at an appropriate level of detail (at any time during

system development),

2. achieving sufficient agreement about the requirements among the relevant stakeholders,

3. capturing (and documenting) the requirements according to the constraints of the

organization,

4. performing all requirements related activities according to the principles of the agile

manifesto.

The key ideas of this definition are in detail:

 RE@Agile is a cooperative approach:

“cooperative” emphasizes the agile idea of intensive stakeholder interaction by

frequently inspecting the product, providing feedback on it and adapting and clarifying

the requirements as all have learned more [AgileManifesto2001].

 RE@Agile is an iterative process:

This suggests the idea of “just in time”-requirements. Requirements do not have to be

complete before starting technical design and implementation. Stakeholders can

iteratively define (and refine) those requirements that are to be implemented soon to the

required level of detail [LaBai2003].

 RE@Agile is an incremental process:

Implementation of those requirements that deliver the highest business value, or that

mitigate against the most significant risks, should form the first increment. Early

increments strive to create a minimal viable product (MVP) or a minimal marketable

product (MMP). From then on subsequent increments add to the product, prioritizing

those requirements that promise to deliver the highest business value, thus increasing

the overall value of the result [Reinertsen2009].

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 9 / 36

The first goal (“relevant requirements known at the appropriate level of detail”) again refers to

the iterative approach: “relevant” are those requirements that should be implemented soon. And

those have to be understood very precisely (including their acceptance criteria) – especially by

the development team. They have to conform to the “definition of ready” (DoR). Other

requirements – that are not highest priority yet – can be kept at a higher abstraction level – only

to be detailed further as soon as they become more important.

The prerequisite for the second goal (“sufficient agreement among relevant stakeholders”) is to

know all stakeholders and their relevance for the system under development. As the person

responsible for requirements (usually the product owner) you have to negotiate the

requirements with those relevant stakeholders to determine the order of their implementation.

Agile approaches suggest valuing intensive and ongoing communication about requirements

more than their documentation. Nevertheless, the third goal emphasizes the importance of

documentation at an appropriate level of detail (which differs from situation to situation). If an

organization has to keep documentation about requirements (for legal purposes, for traceability,

for maintenance, and so on) even agile approaches have to ensure that this kind of

documentation is produced. However, it does not have to be created upfront. It might save time

and effort to create that documentation in parallel to the implementation, or even after the

implementation.

Requirements Management summarizes all activities to be performed once you have existing

requirements and requirements-related artifacts. This includes version management and

configuration management as well as traceability among requirements and traceability to other

development artifacts. RE@Agile suggests managing the effort spent on such activities carefully

to balance cost against benefit. For example:

 Extensive version management can sometimes be replaced by quick iterations leading to

product increments (i.e. change history of requirements since they were first

encountered is less interesting than their current valid state).

 Configuration management (baselining) is included in the iterative determination of

sprint backlogs, i.e. grouping those requirements that currently promise the highest

business value.

Therefore, some of the time- (and paper-) consuming requirements management activities of

non-agile approaches are substituted by activities based on agile principles.

As explained in the RE@Agile Primer [IREB2017], Scrum has introduced the role of a product

owner. This product owner has the responsibility for good Requirements Engineering in an agile

environment although other stakeholders (like business analysts, Requirements Engineers and

the development team) will assist the product owner in that process and maybe do most of the

work related to Requirements Engineering.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 10 / 36

In this syllabus - for the sake of shortness - we will refer to the product owner (as responsible

person) when it comes to perform requirements related tasks – thereby in no way excluding

work done by the other stakeholders mentioned above.

The following chapters of this syllabus will go into more detail on the various aspects of

RE@Agile.

Chapter 2 will discuss the prerequisites for successful system development: balancing

visions/goals, stakeholders and scope of the system.

Chapter 3 and 4 will discuss handling of functional requirements, quality requirements and

constraints on different levels of granularity.

Chapter 5 will discuss the process of estimating, ordering and prioritizing requirements to

determine the sequence of increments.

Chapters 2 – 5 mainly emphasize handling the requirements of a single development team

(of 3 – 9 persons).

Chapter 6 discusses scaling Requirements Engineering for larger, potentially distributed teams,

including overall product planning and road mapping.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 11 / 36

EU 2 A Clean Project Start (L2)

Duration: 60 minutes + 30 minutes exercise

Terms: Product Vision, Product Goal, Stakeholder, Persona, Product Scope, System Boundary

Even in agile approaches some important prerequisites have to be established before successful

iterative and incremental system development work can start.

EU 2.1 Vision and Goal Specification

Duration: 15 minutes + 15 minutes exercise

Educational Objectives:
EO 2.1.1 Mastering and using vision and goal specification

The system vision or product vision describes the overall goal that shall be achieved with the

system/product. Agile literature often refers to the product vision instead of a system vision.

Both terms (product or system vision) are interchangeable and are used depending on the

particular domain or context of the development activity. The vision is of utmost importance for

every development activity. It defines the cornerstone and serves as an overall direction for all

development activities. Every requirement should support achieving the system vision

[Scrumguide].

The difference between a goal and a requirement can be defined as follows [Glinz2014]:

 a goal is a statement about a desired state of affairs (that a stakeholder wants to achieve)

 a requirement is a statement about a desired property of the system

In certain domains, the term problem (which is to be solved by a particular system) is used

instead of the term goal. From an RE perspective the terms are directly related: a problem is a

statement about an existing and undesired property, while a goal expresses the desired future

state.

Alternative approaches to the formulation of goals or visions are:

 SMART goal formulation [Doran1981]. SMART is an acronym and stands for Specific,

Measurable, Achievable, Relevant, and Time-bound.

 PAM goal formulation [Robertson2003]:

- What is the purpose (P)?

- What is the business advantage (A)?

- How would we measure that (M)?

 Product vision box / Design the box [Highsmith2001]. Create a package for your product

that shows the key benefits/ideas of a product to potential customers.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 12 / 36

 News from the future [HeHe2010]: Write a short newspaper article supposed to be

published the day after a successful product launch describing why the product is so

great.

 Vision Boards: a graphical collage of goals, potentially sorted by short term, mid-term

and long-term visions. A more formal approach for vision boards can be found at

[Pichler2011].

 Canvas Techniques [OsPi2010] like the Business Model Generation Canvas or the

Opportunity Canvas (and many similar canvases) offer techniques to create focused and

easy-to-understand visual representations.

Whatever form one chooses, every stakeholder has the right to know what the team is striving

for. The definition of the vision and initial goals must therefore take place at the beginning of a

development effort.

Changes to the vision or goals are rare, but not impossible. They may occur for example when

new stakeholders are introduced or because works on the system reveals a fundamentally new

understanding of the system or its context. Changes to the vision or goals are likely to have a

significant impact on development and should be treated with care.

One option is to work with different vision documents, each covering a different time horizon

into the future. At any particular point in time a valid and accurate six month, one-year and

two-year vision, agreed with all relevant stakeholders, may be available to the development

team. These vision documents are reviewed and updated at regular points in the cycle.

It is also not uncommon to focus on the realization of a particular subset of goals for a certain

period of time (e.g. 6 months) and afterwards change the goals to follow another direction. Too

frequent changes of the vision/or goals, however, are an indicator that there is no clear direction

driving product development [Reinertsen2009].

EU 2.2 Specifying the System Boundary

Duration: 15 minutes + 15 minutes exercise

Educational Objectives:
EO 2.2.1 Mastering the specification of the system boundary to delimit scope from context

A shared and common understanding of the scope (according to IREB: “the range of things that

can be shaped and designed when developing a system”) and the context (according to IREB “the

part of the system environment relevant for understanding the system and its requirements”) of

the system is a prerequisite for an effective and efficient development effort [Glinz2014].

Misunderstandings related to the system boundary may lead to:

 the development of functionalities or components that were not under the responsibility

of the development effort (the assumed scope was too big)

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 13 / 36

 the false assumption that functionalities or components that are in fact part of the

system should have been developed outside the system (the assumed scope was too

small)

The definition of the scope and the context go together by defining the system boundary and the

context boundary. The system and the context boundary can be defined by discussing:

 Which features or functionalities have to be provided by the system and which have to

be provided by the context? (definition of the system boundary)

 Which technical or user interfaces have to be provided by the system to the context?

(definition of the system boundary)

 What is irrelevant for the system, i.e. does not influence its scope in any way?

 Which aspects of the system context can be modified during system development?

(definition of the scope)

Keep in mind that the context boundary is always incomplete because the context boundary can

only be defined by the things that one explicitly excludes from the system context. Further

aspects of the system context include in particular stakeholders. The identification and

management of stakeholders is described in EU 2.3.

The system boundary can be documented and clarified with several techniques, for example

 A Context Diagram: documents the system, elements of the context, and their

relationship

 Natural language, i.e., a list of features, functionalities, aspects of the context, aspects of

the scope and further aspects outside of the context

 A Use Case diagram: A UML diagram type that models the actors and the use cases of a

system. It describes the context/scope on a detailed level and is especially useful for

clarifying scope and context

 A Story Map: a two-dimensional arrangement of user stories into a useful model to help

understand the functionality of the system. It describes the context/scope on a detailed

level and is especially useful for clarifying the scope

The definition of an initial scope must take place at the beginning of a development effort. Scope

and context will inevitably change during a development effort because of a new or changed

understanding of the system or context. The documentation of the scope and context should

therefore be updated regularly.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 14 / 36

EU 2.3 Stakeholder Identification and Management

Duration: 15 minutes

Educational Objectives:
EO 2.3.1 Mastering and using stakeholder identification and management

Failure to identify and include an important stakeholder in a development effort can have a

great impact: Discovering such a stakeholder’s requirements late (or missing them altogether!)

may lead to expensive changes or a useless system [PoRu2015].

The onion model from Ian Alexander [Alexander2005] is a simple tool for stakeholder

identification and classification. The model consists of three types of stakeholders: Stakeholder

of the system, stakeholder of the surrounding context, and stakeholder from the wider context.

Stakeholders of the system are also called direct stakeholders. Stakeholders from the

surrounding and wider context are also called indirect stakeholders.

If a system has a human user, the user is one of the most important direct stakeholders.

The users of a system typically cover a wide spectrum of people with different expectations,

attitudes, and prerequisites. Understanding the spectrum of users for a particular system is an

important first step. If the number of users is small, it is advisable to get to know them (or their

representatives) by personal interviews. If the number of users is large or even unknown, the

spectrum of users should be captured with other means, e.g. personas [Cooper2004] that

represent exemplary users with extreme characteristics. In the age of data analytics, google

analytics and big data, online user behavior can often be analyzed directly for deployed product

increments with automated tools.

Indirect stakeholders can be found in the surrounding context of the system, and may be just as

important for a development effort as the users themselves. Examples include legal

representatives, governmental or standardization bodies, audit organizations for compliance

verification in regulated markets (medical, transportation, aviation), or looking even wider

NGOs, unions or competitors.

Systematic identification of key stakeholders should take place at the beginning of a

development effort and the results managed throughout the development effort as a continuous

activity. A simple list including contact details and relevant attributes will suffice in most

contexts. Changes to this list can occur at any time, either because a stakeholder was initially

overlooked or due to changes in the context, such as a new NGO being established. Every

participant of a development effort (e.g. development team and product owner) should be aware

of the importance of stakeholders and look for signs of new or missing ones.

Depending on the particular system and the domain, existing documentation and legacy systems

may also be important sources of requirements, and these should be systematically identified

and managed in a similar way as stakeholders, see [IREB2012].

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 15 / 36

EU 2.4 Balancing of Vision and Goals, Stakeholders, and Scope

Duration: 15 minutes

Educational Objectives:
EO 2.4.1 Mastering the balancing of visions & goals, stakeholders, and scope

The definition of vision and goals, stakeholders and the system boundary depend on one another

[PoRu2015]:

 The relevant stakeholders formulate the vision and the goals. Therefore, the

identification of a new relevant stakeholder may have an impact on the vision or the

goals.

 Vision and goals can be used to guide the identification of new stakeholders by asking:

Which stakeholder may be interested in achieving the vision/the goals or is affected by

achieving the vision/the goals?

 Vision and goals can be used to define an initial scope by asking: which elements are

necessary to achieve the vision/the goals?

 Changing the system boundary (and thus the scope) may have an impact on the

vision/the goals. If an aspect is removed from the scope, it has to be verified that the

system still has sufficient means to achieve the vision/the goals.

 Stakeholders define the system boundary. Therefore, the identification of a new relevant

stakeholder may have an impact on the scope.

 A change of the scope (e.g. to fulfill a goal) requires agreement from the relevant

stakeholders.

These interdependencies should be used to balance all three elements and to examine the

impact of changing one of the three elements on the other.

Because of these tight dependencies between vision and goals, stakeholders, and scope we

recommend treating all these elements together and in a coherent way.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 16 / 36

EU 3 Handling Functional Requirements (L2)

Duration: 120 minutes + 90 minutes exercise

Terms: functional requirements, theme, epic, feature, user story, acceptance criteria, splitting
and grouping techniques, definition of ready (DoR), INVEST

This core EU of the Advanced Level primarily takes a static view on functional requirements,

i.e. structuring a larger set of requirements into abstraction hierarchies.

EU 3.1 Different levels of requirements granularity

Duration: 15 minutes

Terms: requirements granularity, hierarchies of requirements

Educational Objectives:
EO 3.1.1 Knowing that functional requirements exist on different levels of granularity

Stakeholders usually communicate requirements on different levels of granularity. Sometimes

they ask for big chunks of functionality, sometimes they ask for minor details to be added or

changed. It is the job of the product owner (supported by other stakeholders) to elicit all those

requirements and structure them [Scrumguide].

Both, coarse grained requirements and fine-grained requirements are useful. The coarse-grained

requirements allow the product owner to keep an overview of all functional requirements. This

is especially necessary for long term planning, road-mapping, selecting requirements that

promise early business value for further investigation, high level estimation and much more.

The fine-grained requirements are necessary to achieve a thorough understanding of details that
is necessary for the development team to implement those requirements [Patton2014].

Within Agile the terms theme, epic and feature are used to represent distinct levels of

granularity, although no clear consensus has yet emerged as to their exact order. Often the

hierarchy Epic-Feature-User Story is preferred, with parts of the hierarchy grouped by themes.

See also Figure 1 in [IREB2017] in Chapter 3.1.5 and the discussion in the next chapter.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 17 / 36

EU 3.2 Identification, documentation and communication of functional

requirements

Duration: 15 minutes + 30 minutes exercise

Terms: value-based and design-based and groupings of requirements, epic, theme, feature,
stories, T-approach

Educational Objectives:
EO 3.2.1 Mastering and using a top-level decomposition of requirements supporting iteration

planning and road-mapping
EO 3.2.2 Mastering and using different decomposition strategies in the large
EO 3.2.3 Mastering and using identification, documentation, and communication of functional

requirements on different levels of granularity

RE@Agile strives for “just in time requirements” [IREB2017]. To determine which requirements

should be defined in sufficient detail an overview is necessary.

The vision and the goals may not be sufficient to make such decisions. Therefore, an

intermediate goal for a product owner is to come up with an overview of all requirements within

the scope of a system, i.e. cover full breadth without much depth. This is often called a

T-approach, since this broad overview resembles the horizontal bar of the letter T while the

drill-down of those requirements that promise highest business value resembles the vertical bar

of the letter T.

Different criteria can be used to decompose the vision or the goals in order to yield a set of high

level requirements that – considered together – span the intended scope. Many methods have

suggested to use a process-oriented decomposition [GoWo2006] [Lamsweerde2009], i.e.

splitting functionality into business processes, use-cases or large stories. This kind of

decomposition fulfills the first three criteria of INVEST as discussed in the next chapter, i.e. the

resulting processes are independent, negotiable and – most important – valuable.

Alternative decomposition strategies could be based on business objects, on subsystem

decomposition of an existing system (i.e. a history based or design-based approach), hardware

distribution or geographical distribution of subsystems.

While the results of a process-oriented decomposition are called use-cases or user stories, the

resulting chunks of the alternative decompositions are often called epics, themes or features.

Whatever the big chunks of functionality are called, they provide a good basis for (coarse)

estimation and can already be ordered, thus creating a roadmap or a preliminary schedule of

iterations (or sprints – in the Scrum terminology).

All of these high-level requirements have to be detailed before they can be implemented by the

development team (see next chapters).

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 18 / 36

For communication and documentation stories, epics, feature or themes are often captured on

physical cards, collected in the product backlog. Alternatively, many tools are available to

capture those requirements electronically. As soon as higher-level requirements are refined into

a set of lower level requirements, hierarchies of requirements are created. Ideally the product

owner can manage the different levels, without losing the higher-level groupings after

refinement.

Story Maps [Patton2014] are one way to arrange and visualize cards in two dimensions, so that

epics and features are still visible even if they have been refined to user stories.

EU 3.3 Working with user stories

Duration: 30 minutes

Terms: user story, INVEST criteria, 3C-Principle, acceptance criteria

Educational Objectives:
EO 3.3.1 Mastering and using the concepts of telling INVEST user stories
EO 3.3.2 Mastering and using the extension or alignment of themes, epics, features and user

stories with additional requirements artifacts to improve communication with
stakeholders

User stories are a popular approach to structure requirements. [Cohn2004] suggests a formula

to capture user stories. The three constituents of this formula ensure that

1. we have someone who wants that functionality (“As a user …”),

2. we know what the user wants (“… I want …”) and

3. we understand the reason or motivation (“… so that …”).

The formula helps to think about who wants what and why, but it is not so much the formalism

that makes user stories successful, but asking and answering these three questions.

Bill Wake created “INVEST” [Wake2003] as a nice acronym to discuss characteristics of a user

story. The meaning of the 6 letters is as follows:

 I: user stories should be independent. That is, it should be possible to implement user

stories in any order, with minimal dependencies among them.

 N: user stories should be considered not as a written contract but rather as a promise for

future negotiation, or a memento of past discussions. In the role of a Requirements

Engineer, professionals are skilled facilitators of this negotiation between business

experts and developers to explore the meaning of the user story.

 V: every user story should create value. More details about business value follow in EU 5.

 E: a user story should be estimable. If the effort required for its implementation cannot
be estimated the story is not clear enough yet. More details about estimation follow in EU
5.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 19 / 36

 S: user stories (in the end) should be small enough to be developed within a sprint and

still provide value to the business or other stakeholders. Product owners have to break

down stories into such small chunks in order to allow the development team to finish

that story in one iteration. Techniques for story splitting are discussed in EU 3.4.

 T: user stories should include acceptance criteria to make them testable. Such criteria are

typically written prior to the development of the story. Techniques for specifying

acceptance criteria are discussed in EU 3.5. Product owners should understand the

pitfalls of non-testable user stories and be able to reformulate them into testable user

stories.

Stories are usually captured on cards. The 3C principle (card, conversation, confirmation)

[Jeffries2001] emphasizes that the card is only a means to an end – a physical token in tangible

and durable form of what would otherwise just be an abstraction. The card should not be

considered as an equivalent for a well-written requirements statement. The physical card (or its

equivalent in a tool) is there to trigger a conversation about that subject, to bring product

owners, other stakeholders and the development team together to discuss that card, gain a

deeper understanding and clarify open issues. No matter how much conversation takes place,

the confirmation is the acid test for that story: usually the acceptance tests attached to that story,

i.e. the things that the product owner will check when the team claims to have finished the

implementation of the story.

While Agile emphasizes the use of user stories, it does not preclude the use of traditional

analysis artifacts such as context diagrams, business use cases, system use cases, object models,

state chart diagrams, activity diagrams and so on, where appropriate in the context of a

particular project (cf., e.g., [Scrumguide]). The skilled product owner should understand how

user stories can be used together with other artifacts, and be able to explain their meaning

where required to stakeholders.

EU 3.4 Splitting and grouping techniques

Duration: 15 minutes + 30 minutes exercise

Terms: Compound story, vertical slicing, horizontal slicing, splitting patterns, grouping and
abstraction patterns, story map, spike

Educational Objectives:
EO 3.4.1 Mastering and using splitting techniques for coarse-grained functional requirements to

gain finer, more precise requirements
EO 3.4.2 Mastering and using grouping or abstraction of fine-grained functional requirements

into coarser requirements to deal with complexity, have a better overview and do
higher level planning

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 20 / 36

In order to generate user stories that are small enough to fit within a single sprint, larger stories

may be sliced into more fine-grained ones. A number of patterns can be applied for this purpose,

ranging from reducing the feature list to narrowing down the business variations or input

channels [Leffingwell2010]. Where a user story represents an unacceptable level of uncertainty,

spikes may be used to focus the development team on the problem during a dedicated sprint.

Even fine-grained user stories should, however, be defined in such a way that they deliver some

value for at least one stakeholder.

Decomposition of user stories will result in requirements hierarchies as discussed in EU 3.1.

This hierarchical and 3-dimensional structure can be visualized as a two-dimensional story map

[Patton2014]. The horizontal dimension shows bigger groupings (like large stories, epics,

features) thus maintaining an overview of the requirements; the vertical dimension allows to

attach all lower level details for the bigger groups and order them for assignment to sprints and

releases.

Such decomposition and grouping of requirements are often best performed with other team

members who may have greater insights into business and technical dependencies that may

exist among user stories.

EU 3.5 Knowing when to stop decomposing

Duration: 30 minutes + 30 minutes exercise

Terms: Definition of ready (DoR), Definition of done (DoD), estimating, acceptance tests

Educational Objectives:
EO 3.5.1 Mastering and using the refinement of requirements to a level that is adequate for

implementing those requirements. Knowing when to stop detailing requirements
EO 3.5.2 Mastering quality assurance of user stories during agile software development

The product owner is responsible for continuing discussions with developers until both sides

have a common understanding of the requirements [Meyer2014]. The Pareto principle can be

used in assessing when this point has been reached: requirements must not be defined 100%

perfectly, but well enough to address the team’s key questions and clearly enough that the

implementation effort can be estimated. Starting implementation with too many open questions

may reduce development speed considerably and cause delays against forecasts.

For this level of joint understanding Agile has defined the Definition of Ready (DoR)

[AgileAlliance]. A story is ready when it fulfills the INVEST criteria [Wake2003], especially the

last three of the letters:

 The development team has been able to estimate the story and the estimated value is

small enough to allow the story to fit into one iteration. Lawrence suggests that the story

should not only fit in one iteration, but it should be so small that 6 – 10 stories can be

assigned to the next iteration.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 21 / 36

 The product owner did provide acceptance criteria for the story. Based on the CCC

principle everyone agrees that there has been enough conversation and criteria for

confirmation of success in terms of acceptance tests are defined.

For formulating acceptance criteria different styles are available [Beck2002]. They can be

informal natural language sentences to be checked after implementation. They could be a little

bit more formal using the Gherkin syntax (Given/When/Then) to structure these sentences.

Some methods even advocate to use TDD (Test Driven Development) by formally coding the test

cases so that they can automatically be executed after implementation [Meyer2014]. This formal

approach – while very precise – may be hard to do and understand for product owners and

business-oriented stakeholders.

For the product owner the DoR is the equivalent to the definition of done (DoD) of the

development team. DoD defines criteria to determine whether a story has been successfully

implemented while DoR defines that the development team has sufficient information about a

user story so that it can be "Done" by the development team within a sprint.

Discussing requirements with developers needs time and is best done prior to the sprint

planning. Planning can then focus on selecting the right user stories and assigning these to the

responsible development teams. Ideally, developers will have seen the requirements evolving,

and helped the product owner by asking questions and performing estimations.

Different forms of refinement session are possible. Refinement meetings may, for example, be a

more efficient way of performing refinement than repeatedly disturbing individual development

team members. Refinement sessions and all the surrounding activities consume time from the

overall iteration capacity. The scrum guide recommends a maximum of 10% capacity from the

development team for refinement: if more time than that is required, the iteration should be

replanned for getting more accuracy into the product backlog as this is a warning sign for poor

quality of the requirements. Product owner should understand the relationship between

iteration length, risk and iteration overhead, and know that there are shorter feedback loops

than the sprint itself.

EU 3.6 Project and Product Documentation of Requirements

Duration: 15 minutes

Terms: project and product documentation, reasons for preserving documentation

Educational Objectives:
EO 3.6.1 Knowing how to distinguish between project and product information /

documentation and knowing methods and techniques to preserve information for
future use

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 22 / 36

For the project team story cards are sufficient reminders of ongoing discussions to serve as a

basis for development [Cohn2004]. For developers that have been continually engaged on a

project, often the code itself is sufficient to understand what has been done previously.

Beyond those directly involved in project development, however, are many other stakeholders –

the customer, the wider business, support teams, related project teams, etc. – whom code and

user stories do not provide enough context and structure to understand how the work will

impact them. Such stakeholders therefore represent different target audiences for

documentation.

Furthermore, the product that results from a development project will itself (hopefully) have a

life beyond the project, and may indeed evolve throughout multiple development projects.

Requirements Engineering artifacts can typically be classified as relevant to the project only, or

forming part of the product documentation that should be preserved for future use. Separating

product concerns from project concerns may represent a good investment in sustainable

documentation.

In line with the principles of Agile, effort should only be spent on documentation when that

documentation has a consumer, and it is important to obtain regular feedback from that

consumer when developing that artifact. Techniques to minimize documentation effort include

creating dedicated, wiki-oriented documentation systems, in particular for product-oriented

artifacts that will evolve over time [Weerd et al.2006].

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 23 / 36

EU 4 Handling Quality Requirements and Constraints (L2)

Duration: 60 minutes + 30 minutes exercise

Terms: Quality Requirements, Constraints, Quality Tree, DoD

This EU takes a look at quality requirements and constraints in agile projects. Even though

the term “non-functional requirements” is still often used in practice as an umbrella term, we

use the more concrete and precise categories “quality requirements” and “constraints” according

to [Glinz2014].

Initially quality requirements are often deliberately vague. They have to be captured in their

vague format as a starting point. Vague quality requirements and constraints can be refined into

more precise requirements. Sometimes concrete functional requirements will be derived from

them.

EU 4.1 Understanding the importance of quality requirements and

constraints

Duration: 15 minutes

Educational Objectives:
EO 4.1.1 Mastering the importance of quality requirements in agile projects
EO 4.1.2 Mastering categorization schemes for quality requirements and constraints

Many agile methods concentrate on functional requirements only and do not put enough

emphasis on qualities and constraints [Meyer2014].

Key constraints and qualities envisaged for the system should be made explicit early in the

lifecycle of a product, since they determine key architectural choices (infrastructure, software

architecture and software design). Ignoring them or learning too late in the project may

endanger the whole development effort. Other qualities can be captured iteratively, just in time,

as with functional requirements [Meyer2014].

Categorization schemata for quality requirements and constraints (e.g. [RoRo2012],

[ISO25010]) can be used as checklists so as not to forget important categories.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 24 / 36

EU 4.2 Adding Precision to Quality Requirements

Duration: 15 minutes

Educational Objectives:
EO 4.2.1 Mastering the detailing or decomposing of quality requirements and constraints
EO 4.2.2 Mastering the derivation of functional requirements from quality requirements
EO 4.2.3 Mastering the specification of acceptance criteria for quality requirements
EO 4.2.4 Mastering and using quality trees

Quality requirements have to be communicated to the development team in a way that is both

unambiguous and that supports requirement refinement and decomposition in the same way as

for functional requirements.

Decomposing (or detailing) a quality requirement means specifying quality requirements on a

lower level of detail, e.g. by using the generalizations in the categorization schemes like

“usability” and making them more precise by finding requirements for “ease of use” and “ease of

learning”.

Deriving means that quality requirements can be achieved by defining functional requirements,

i.e. suggesting functions that achieve the desired quality or constraints. An example for refining a

security requirement is introducing a role concept and passwords. Quality trees [Clements et

al.2001] are also a proven way to structure quality requirements.

For quality requirements acceptance criteria need to be defined as well.

As for other types of requirements, quality requirements should be testable [PoRu2015].

The type of acceptance criteria used will depend on the category of the quality: a quantifiable

acceptance criterion for a usability requirement, for example, might be “90 out of 100 users

must be able to enter an invoice in less than three minutes”.

EU 4.3 Quality Requirements and Backlog

Duration: 15 minutes + 30 minutes exercise

Educational Objectives:
EO 4.3.1 Mastering attaching of quality requirements to functional requirements if applicable
EO 4.3.2 Mastering creating separate backlog items for quality requirements
EO 4.3.3 Mastering other quality requirements as part of the DoD

Generalized quality requirements need to be linked to more specific functional requirements

[PoRu2015], e.g., some quantifiable throughput attached to a user story, or specific security

features attached to an epic.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 25 / 36

Other qualities, e.g. scalability, maintainability, or robustness should be made known to

development and checked in each iteration. A common way of achieving that is including them in

the Definition of Done. This is often supported by automated testing [Leffingwell2010].

Another approach is to have a separate recording (away from the product backlog) of such

qualities to keep them visible for the teams e.g. as a common list or in the form of checklists;

such requirements are all on the same rank (because all must be fulfilled) [Leffingwell2010].

It is also good practice to make the relationships of functional vs. affected quality requirements

visible by setting up a matrix on a wall, indicating the "affected by" relationship with marks in

the respective cells.

EU 4.4 Making Constraints Explicit

Duration: 15 minutes

Educational Objectives:
EO 4.4.1 Mastering and using different kinds of constraints in agile projects
EO 4.4.2 Knowing reuse of constraints

Constraints are an important type of requirements that limit the design choices of the

development team [Glinz2014]. Constraints can be categorized as either product constraints or

process constraints. Product constraints include required use of technologies, reuse of existing

components, make or buy decisions or resources in form of material, knowledge and

competence, while process constraints prescribe either organization or development processes.

These include organizational policies and regulations, financial limits, norms and standards,

compliance regulations and audits, legal and governmental constraints.

It is important to make such constraints explicit so that everyone in the team is aware of them.

The most limiting ones should be known early in the project. Others should be captured as soon

as they are discovered.

Such constraints are normally applicable to a wider range of projects. So as soon as they are

captured once they can easily be reused.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 26 / 36

EU 5 Prioritizing and Estimating Requirements (L2)

Duration: 75 minutes + 45 minutes exercise

Terms: Backlog ordering and prioritization, business value, MVP, MMP, ROI, cost of delay,
WSJF, time to market, Planning Poker, Estimation Wall, Cone of Uncertainty, Velocity,
Sizing, reference stories, T-Shirt-Sizing, Fibonacci Sequence

EU 5.1 Determination of business value

Duration: 30 minutes + 15 minutes exercise

Educational Objectives:
EO 5.1.1 Mastering the determination of business value
EO 5.1.2 Using business value to order backlog items
EO 5.1.3 Mastering and using alternative calculations for Business value
EO 5.1.4 Understand how to align business value measurement to strategic goals of the

organization
EO 5.1.5 Mastering the concept of MVP (minimal viable product)
EO 5.1.6 Mastering the concept of MMP (minimal marketable product)

Agile approaches aim to maximize the overall business value and to permanently optimize the

overall business value creation process [Leffingwell2010]. All requirements (whether coarse or

fine) should be ordered primarily by the value they can bring to the organization. A prerequisite

to doing so is an agreed definition of what business value for this product/company is.

Business value is not only defined by profit: alternative calculations include Return on

Investment, Payback Period, Net Present Value, Weighted Shortest Job First (WSJF), Cost of

Delay and Balanced Scorecard. Market value, time to market and reducing potential risks all

potentially represent types of business value, as do operational and organizational excellence

[Reinertsen2009].

Indeed, the definition of business value may be different in every organization, every project,

and from the perspective of different stakeholders. Professionals should understand how to

align business value measurement to the strategic goals of the organization, and be able to adapt

this alignment as these goals change.

One technique to identify business value within the requirements is the KANO model. In general,

relative sizing of business value is sometimes preferable to absolute business value calculation.

Key terms within Agile are MVP (minimal viable product) and MMP (minimal marketable

product) [IREB2017]. MVP can reduce the effort drastically while the business value remains

approximately the same. MVP’s can be defined not only for the whole product but also for a

particular feature.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 27 / 36

While an MVP is great for validated learning, it is not enough for long-term operation; for real

deployment to the business the MMP is important. MVP is primarily about scope reduction:

Produce the business value with the minimal possible feature set and expand later if the feature

is successfully used.

EU 5.2 Business Value, Risks, and Dependencies

Duration: 15 Minutes

Educational Objectives:
EO 5.2.1 Mastering and using backlog prioritization
EO 5.2.2 Mastering different basic prioritization strategies
EO 5.2.3 Mastering the determination of requirement dependencies
EO 5.2.4 Mastering the modification of the order of backlog items by considering dependencies
EO 5.2.5 Mastering the dependencies between potential business value and related risks.

Different basic prioritization strategies in the different types of backlogs (enterprise, product,

sprint) are possible [Leffingwell2010]. An enterprise might adopt a strategy of early business

value gain, for example, if its primary goal were to deliver a product early and establish market

share. A strategy of early risk reduction might be preferred if a supplier wanted at all costs to

avoid a product return due, for example, to inadequate performance or security.

Very often potential business value and risks are interdependent. Focusing on a specific business

value might raise specific risks, changing the focus of the business value might change the risks

as well [Reinertsen2009].

In each case the ordering of requirements should be adjusted in line with the selected strategy,

taking into account dependencies among the requirements.

EU 5.3 Estimating User Stories and Other Backlog Items

Duration: 30 Minutes + 30 minutes exercise

Educational Objectives:
EO 5.3.1 Mastering and using forecasts and estimates
EO 5.3.2 Knowing how to derive a mid-term forecast
EO 5.3.3 Knowing the advantage of relative, categorizing and group estimations
EO 5.3.4 Knowing estimation techniques

Even in a perfect agile world forecasts are needed in order to determine how much work can be

"done" within a previously specified iteration (timebox). No un-estimated element is allowed to

enter a sprint in scrum for two reasons [Cohn2005]:

1. It is not clear if the element can be completed within the sprint and thereby prevents

delivering working software at the end of the sprint.

2. Without discussion and estimation, the team would have no reference point (planning vs.

actual doing) for learning for the upcoming sprints.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 28 / 36

Additionally, development organizations that exceed one team usually need forecasts in order to

prioritize and plan work properly.

Forecasting of development takes place over several time scales. As the understanding of what

requirements are assigned to the next iteration should be quite detailed, longer-term iteration

plans will have less detail but should allow for large scale estimating and planning.

Such planning also allows reporting of progress, namely which epics, features and user stories

have indeed been delivered against their expected release dates. It supports as well detecting

requirements to split because they are too large to fit into one estimation [Leffingwell2010].

Initial project estimates are often inaccurate, but become increasingly precise as the activity is

iterated (a principle known as the Cone of Uncertainty). By analyzing what has been delivered in

previous iterations, the team’s velocity can be calculated allowing an improved estimation of the

capacity of future iterations [McConnel2006].

To support better mid-term estimates, big requirements like EPICs are broken down into

features in order to perform estimates on feature level and sum them up to the EPIC. Those

estimates are still not very precise but are helpful for EPIC estimation and serve additionally as a

kind of check regarding the knowledge of the EPIC (assumptions etc.).

Scrum defines rules that help to do better and more accurate estimates:

 Everyone involved in the estimation must have the same understanding of the work that

needs to be "done".

 Estimations must be performed by those doing the work, the cross-functional team (Dev-

Team in Scrum). This helps to bring all involved people on the same level of knowledge

by exchanging knowledge and assumptions about the work to be done.

 Estimations should be done relatively / relative to work already done (Estimation by

analogy), since those estimates are more likely to be accurate than absolute estimates.

 Estimates should be done in an artificial unit representing effort, complexity and risk in

one. Using an artificial unit is necessary to bring everyone on the new way of estimation

because the usage of hours / days in estimations tends to reinforce existing, traditional

patterns of behavior.

 The usage of the extract from the Fibonacci sequence or T-Shirt sizes help to support that

way of estimation (usage of terms like "bigger than/ smaller than" instead of "exactly 2

times as much as …").

Several techniques support the relative estimation. The most famous technique is the so-called

Planning Poker [Cohn2005]. In Planning Poker, the development team members discuss the

requirement and everyone selects a card from the Planning Poker set which is based on the

Fibonacci sequence to represent the relative size of the new requirement in relation to a

common basis. After everyone has selected his or her poker card the team members with the

lowest and the highest estimate discuss the reasons for their estimates and try to convince the

other team members from their argumentation. Afterwards the next estimation round is started.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 29 / 36

If the team cannot agree on one common value within three rounds the requirement is send

back to the product owner. If the team can agree the common value is assigned.

The advantage of Planning Poker is, that it is a very good technique for new and unexperienced

teams to find their estimates because it avoids anchoring by single team members. The

disadvantage is that it is very time consuming. [Note: The book Thinking, Fast and Slow from D.

Kahneman [Kahneman2013] gives a great introduction into anchoring and other psychological

effects that related to thinking and judgement.]

To overcome this disadvantage for more experienced teams improved techniques are used.

One simplification of the Planning Poker technique is based on the same principles as planning

poker but uses a different way of determining the right estimate. Instead of every team member

doing a personal estimate one set of poker cards is spread across a table and the reference

requirements are placed in the corresponding "container" represented by the poker card.

Afterwards the requirements are selected by the team members in a round-robin approach

where the team members are allowed either to place a new requirement in the corresponding

"container" or reassign one already placed requirement in a different container. If one

requirement is reassigned multiple times it will be removed and send back to the Product

Owner. This approach is much faster but needs a team that is mature enough to disagree with

assignments done by other team members instead of easily agreeing ("anchoring").

The next step of evolvement is usually called "Affinity Estimation" and is used for estimating

bigger amounts of requirements e.g. for rough estimation in preparation of Release Plannings.

The difference to the previous approach is, that the requirements will not be assigned by round-

robin approach but every team member gets a part of the requirements and assigns it silently to

the "containers" represented by the poker card set. After the silent assignment, all involved

people are allowed to inspect the assigned requirements and mark those that are questioned.

Usually this leads to a quota of 20-30% requirements that need to be discussed and 70-80% that

are accepted by all team members.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 30 / 36

EU 6 Scaling RE@Agile (L2)

Duration: 75 minutes + 30 minutes exercise

Terms: Conway’s Law, Roadmap, Scaling Frameworks, Story Maps

EU 6.1 Roadmaps and Large-Scale Planning (L2)

Duration: 15 minutes

Educational Objectives:
EO 6.1.1 Mastering the organization of requirements that cannot be handled by one

development team
EO 6.1.2 Knowing the difference between vertical slicing and horizontal slicing
EO 6.1.3 Mastering the creation of roadmaps

Story maps [Patton2014]are used to structure requirements in the large. If slicing needs to be

applied because requirements cannot be handled by one development team, vertical slicing (i.e.

functional units) or horizontal slicing (i.e. technology-driven decomposition) can be applied.

That way coarse-grained backlog items with separate units can be estimated and a conversion

rate to story points can be developed.

These larger scale units enable the creation of a roadmap, i.e. a rough, first-cut iteration plan that

is good enough for large scale estimating and planning, but flexible enough to allow for changes

and new directions as more knowledge is acquired.

EU 6.2 Organizing teams to handle larger and more complex problems (L2)

Duration: 30 minutes + 30 minutes exercise

Educational Objectives:
EO 6.2.1 Mastering the splitting of teams and its consequences for Requirements Engineering
EO 6.2.2 Mastering the cooperation of product owners that have to work with multiple

development teams
EO 6.2.3 Knowing Conway’s Law
EO 6.2.4 Knowing different concepts for team splitting
EO 6.2.5 Knowing the concept of Scrum of Scrums
EO 6.2.6 Knowing about the alignment of communication and synchronization
EO 6.2.7 Knowing about the alignment of sprint planning with corporate strategy, i.e.

development of an agile roadmap

Conway's law expresses the idea that organizational structure exerts an influence on software

design and product structure [Conway1968]: it is often observed, for example, that software

interfaces correspond to organizational boundaries.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 31 / 36

Similarly, the structuring of requirements is influenced by the structure of the teams or sub-

teams responsible for their implementation. Conversely, the splitting of teams may in turn be

influenced by the formulation of the requirements. Thus, decisions concerning organizational

structure and requirement structure should not be made in isolation, but rather in consideration

of organization- and product-specific conditions.

For larger and/or more complex problems a team of product owners can cooperate in a similar

way to development teams forming a Scrum of Scrums.

Scaling agility requires measures to align strategy on abstract level based on visions with

concrete development activities. Agile methods, techniques and instruments such as

visualization of agile roadmaps or concepts to establish communication flow and feedback

throughout the organization support this need for alignment.

EU 6.3 Examples of scaling frameworks (L1)

Duration: 30 minutes

Educational Objectives:
EO 6.3.1 Knowing important commonalities shared by scaling frameworks.
EO 6.3.2 Knowing main differences between scaling approaches
EO 6.3.3 Knowing popular example frameworks for scaling
EO 6.3.4 Knowing the key ideas of popular scaling frameworks with respect to Requirements

Engineering

There are different frameworks and implementations to scale agility. The frameworks are

generalizations of concrete implementation in organizations driven by well-known experts and

consulting companies in scaling agility.

All scaling frameworks base on agile values and principles. Each specific framework is based on

a selection of agile good practices and concrete methods, techniques and elements combined

and aligned in a consistent concept.

The scaling frameworks vary in maturity level; the number of good practices, guidelines and

rules; and the options to adapt the framework to specific needs of an organization.

Amongst others SAFe, LeSS, NEXUS, Scrum@Scale and the Spotify’s squads/tribes approach are

the most popular scaling frameworks.

The main differences and key ideas with respect to Requirements Engineering are:

 SAFe [SAFe] is a rich scaling agility framework suited for great number of teams. SAFe

requires a high maturity level, is based on a high number of guidelines and good

practices. SAFe can add a significant amount of overhead. It’s applicable for all types of

agile approaches.

 LeSS [LeSS] is suited for medium number of IT teams (up to about 8), works already on a

lower maturity level and adds a small overhead only. It is targeting SCRUM only.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 32 / 36

 NEXUS [NEXUS] is suited for medium number of IT teams (up to about 8), works already

on a lower maturity level and adds a small overhead only. It is targeting SCRUM only.

 Scrum@Scale [S@S] is a meta-model and a collection of good practices for addressing

specific aspects of scaling agility such as strategy alignment, synchronization and

coordination, agile planning, and continuous improvement.

 Spotify’s squads/tribes approach [Kniberg2012] is an implementation of scaling agility

driven by Hendrik Kniberg. The squads/tribes approach uses elements as used in the

other scaling agility frameworks.

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 33 / 36

DEFINITONS OF TERMS, Glossary (L2)

The glossary defines the terms which are relevant in the context of the RE@Agile Advanced

Level. The glossary is available for download on the IREB homepage at

https://www.ireb.org/en/downloads/#re-agile-glossary

https://www.ireb.org/en/downloads/#re-agile-glossary

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 34 / 36

REFERENCES

[AgileAlliance] Glossary of the Agile Alliance: Definition of term “Definition of Ready”:
https://www.agilealliance.org/glossary/definition-of-ready. Last visited January 2018.

[AgileManifesto2001] Agile Manifesto: http://www.Agilemanifesto.org, 2001. Last visited
January 2017.

[Alexander2005] Alexander, I. F.: A Taxonomy of Stakeholders - Human Roles in System
Development. International Journal of Technology and Human Interaction, Vol 1, 1, 2005,
pages 23-59.

[Beck2002] Beck, K.: Test Driven Development: By Example. Addison-Wesley 2002.

[Clements et al.2001] Clements, P., Kazman, R., Klein, M..: Evaluating Software Architectures. SEI

Series in Software Engineering, 2001.

[Cohn2004] Cohn, M.: User Stories Applied For Agile Software Development. Addison-Wesley,

2004.

[Cohn2005] Cohn, M.: Agile Estimating and Planning. Prentice Hall, Nov 2005.

[Conway1968] Conway, M.E.: How Do Committees Invent? Datamation Magazine , 1968.
http://www.melconway.com/Home/Committees_Paper.html. Last visited January 2018.

[Cooper2004] Cooper, A.: The Inmates are Running the Asylum: Why High Tech Products Drive
Us Crazy and How to Restore the Sanity. Pearson Education, 2004.

[Doran1981] Doran, G.T.: There's a S.M.A.R.T. way to write management's goals and objectives.

Management Review, 1981. AMA FORUM. 70 (11): 35–36.

[Glinz2014] Glinz, M.: A Glossary of Requirements Engineering Terminology. Standard Glossary

for the Certified Professional for Requirements Engineering (CPRE) Studies and Exam, Version

1.6, 2014. https://www.ireb.org/en/downloads/#cpre-glossary. Last visited January 2018.

[GoWo2006] Gorschek, T., Wohlin, C.: Requirements Abstraction Model. Requirements

Engineering Journal, Vol. 11, No. 1, pp. 79-101, 2006.

[HeHe2010] Heath, C., Heath, D.: Switch: How to Change Things When Change Is Hard. Crown

Business, 2010.

[Highsmith2001] Highsmith, J.: Design the Box. Agile Project Management E-Mail Advisor 2001,
http://www.joelonsoftware.com/articles/JimHighsmithonProductVisi.html. Last visited
November 2017.

https://www.agilealliance.org/glossary/definition-of-ready
https://www.amazon.de/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Paul+Clements&search-alias=books-de-intl-us&field-author=Paul+Clements&sort=relevancerank
http://www.melconway.com/Home/Committees_Paper.html
https://www.ireb.org/en/downloads/#cpre-glossary
http://www.joelonsoftware.com/articles/JimHighsmithonProductVisi.html

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 35 / 36

[IREB2012] IREB e.V.: CPRE Advanced Level Elicitation and Consolidation Syllabus, 2012.
https://www.ireb.org/en/downloads/#syllabus-advanced-level-requirements-elicitation-and-
consolidation. Last visited November 2017.

[IREB2017] IREB e.V.: CPRE – RE@Agile Primer – Syllabus and Study Guide, 2017
https://www.ireb.org/content/downloads/26-cpre-re-agile-primer-
syllabus/ireb_cpre_re%40agileprimersyllabusandstudyguide_en_v1.0.2.pdf. Last visited
January 2018.

[ISO25010] ISO/IEC 25010:2011: Systems and software engineering -- Systems and software

Quality Requirements and Evaluation. ISO/IEC Standard 25010:2011.

[Jeffries2001] Jeffries, R.: Essential XP: Card, Conversation, Confirmation, 2001,

https://ronjeffries.com/xprog/articles/expcardconversationconfirmation/. Last visited

January 2018.

[Kahneman2013] Kahneman D.: Thinking, Fast and Slow. Farrar, Straus and Giroux, 2013.

[Kniberg2012] Kniberg, H.: Scaling Agile @ Spotify with Tribes, Squads, Chapters & Guilds
https://blog.crisp.se/2012/11/14/henrikkniberg/scaling-agile-at-spotify. Last visited
January 2018.

[LaBai2003] CLarman, C., Basili, V. R.: Iterative and Incremental Development: A Brief

History. IEEE Computer, Vol 36, No. 6, 2003, 47-56.

[Lamsweerde2009] van Lamsweerde, A.: Requirements Engineering: From System Goals to UML

Models to Software Specifications. Wiley, 2009.

[Larman2016] Larman, C.: Large-Scale Scrum: More with LeSS. Addison Wesley, 2016.

[Leffingwell2010] Leffingwell, D.: Agile Software Requirements – Lean Requirements Practices

for Teams, Programs, and the Enterprise. Addison Wesley, 2010.

[LeSS] Large-Scale Scrum: https://less.works/. Last visited January 2018.

[McConnel2006] McConnel, S.: Software Estimation, Demystifying the Black Art. Microsoft Press,

2006.

[Meyer2014] Meyer, B.: Agile! The Good, the Hype and the Ugly. Springer, 2014.

[NEXUS] Scaling Scrum with Nexus™: https://www.scrum.org/resources/scaling-scrum. Last

visited January 2018.

[OsPi2010] Osterwald, A., Pigneur, Y.: Business Model Generation: A Handbook for Visionaries,

Game Changers, and Challengers. John Wiley and Sons, 2010.

https://www.ireb.org/en/downloads/#syllabus-advanced-level-requirements-elicitation-and-consolidation
https://www.ireb.org/en/downloads/#syllabus-advanced-level-requirements-elicitation-and-consolidation
https://www.ireb.org/content/downloads/26-cpre-re-agile-primer-syllabus/ireb_cpre_re%40agileprimersyllabusandstudyguide_en_v1.0.2.pdf
https://www.ireb.org/content/downloads/26-cpre-re-agile-primer-syllabus/ireb_cpre_re%40agileprimersyllabusandstudyguide_en_v1.0.2.pdf
https://ronjeffries.com/xprog/articles/expcardconversationconfirmation/
https://blog.crisp.se/2012/11/14/henrikkniberg/scaling-agile-at-spotify
https://less.works/
https://www.scrum.org/resources/scaling-scrum

IREB Certified Professional for Requirements Engineering

‑ RE@Agile, Advanced Level ‑

Syllabus IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile - Version 1.0.2 Page 36 / 36

[Patton2014] J. Patton, J.: User Story Mapping –Discover the Whole Story, Build the Right

Product. O’Reilly, 2014.

[Pichler2011] Pichler, R.: Product Vision Board, 2011 http://www.romanpichler.com/blog/the-

product-vision-board/. Last visited November 2017.

[PoRu2015] Pohl, K., Rupp, C.: Requirements Engineering Fundamentals: A Study Guide for the

Certified Professional for Requirements Engineering Exam - Foundation Level. Rocky Nook,

2015.

[Reinertsen2009] Reinertsen, D.G.: The Principles of Product Development Flow – Second

Generation Lean Product Development. Celeritas Publishing, 2009.

[Robertson2003] Robertson, S.: Stakeholders, Goals, Scope: The Foundation for Requirements
and Business Models, 2003, http://www.volere.co.uk/pdf%20files/StkGoalsScope.pdf. Last
visited November 2017.

[SAFe] Scaled Agile Framework 4.5 ® http://www.scaledagileframework.com/. Last visited
January 2018.

[S@S] Scrum at Scale™: https://www.scruminc.com/scrum-scale-case-modularity/. Last visited
January 2018.

[Scrumguide] The Scrum Guide ™ : http://www.scrumguides.org/scrum-guide.html. Last visited
January 2018.

[Sterling2012] Sterling C.: Affinity Estimating – A How-To https://scrumology.com/guest-post-
affinity-estimating-a-how-to/. Last visited November 2017.

[RoRo2012] Robertson J., Robertson S.: Mastering the Requirements Process – Getting

Requirements Right, 3rd edition. Addison Wesley, 2012.

[Wake2003] Wake, B.: INVEST in Good Stories, and SMART Tasks, 2003,

https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/. Last visited January 2018.

[Weerd et al.2006] van de Weerd, I., Brinkkemper, S., Nieuwenhuis R., Versendaal, J., Bijlsma, L.:

On the Creation of a Reference Framework for Software Product Management: Validation and

Tools Support. International Workshop on Software Product Management (IWSPM 2006).

http://www.romanpichler.com/blog/the-product-vision-board/
http://www.romanpichler.com/blog/the-product-vision-board/
http://www.volere.co.uk/pdf%20files/StkGoalsScope.pdf
http://www.scaledagileframework.com/
https://www.scruminc.com/scrum-scale-case-modularity/
http://www.scrumguides.org/scrum-guide.html
https://scrumology.com/guest-post-affinity-estimating-a-how-to/
https://scrumology.com/guest-post-affinity-estimating-a-how-to/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

